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Preface 
This book has been written mainly for Physics students at the undergraduate level, who have a 

natural craving to know the how’s and why’s of everything. Therefore a logical presentation of 

the subject has been attempted in this book with many subtleties uncovered that most of the 

texts keep silent about. Mathematical treatments have been developed from the beginning as far 

as practicable and have been presented in a step by step approach. This relieves the students 

from unnecessary memorising and gives them the power to develop analytical solutions on their 

own. There is no meaning in learning a subject as Electronics without knowing where it is 

applied in our lives, and how to apply the knowledge in a practical design. Therefore practical 

application examples have been included wherever possible to cater to these natural demands of 

an inquisitive student.  

Through a long teaching experience I have discovered many stumbling blocks in the subject that 

confront a student. Concepts that are supposed to have been cleared at pre-university level have 

never been with many students coming from different backgrounds. That an electrical current 

direction is taken to be opposite to the direction of electron flow just for historical reasons, and 

that Ohm’s law has independent and dependent variables which need careful attention, have 

been clearly spelled out which other texts hardly mention. Basic differences between electricity 

and electronics, emf and potential drop, signal and noise have also been spelled out. To some 

students these questions remain ever unanswered. Therefore I have started at a very basic level 

and have tried to clear these points as much as possible. Most questions like how a current flows 

though a capacitor circuit in spite of the fact that there is an insulator interposed, why the 

reactance is lower at higher frequencies, have been answered from a physical point of view. 

Some physical explanations to observed phenomena like the dc transient current through a 

capacitor and that in a series LCR circuit under different damping situations, have been 

attempted by me intuitively, which appear to be original, found in no other book.  

An overview of the methods and concepts has been given before going into the analytical details 

of each topic which places a student on a better footing. While dealing with Thevenin’s 

equivalent circuits, that we are following two different strategies – one for which the circuit is 

known and for the other, it is unknown – have been clearly spelled out which remains mostly 

obscured in other texts. Again that an RC filter is nothing but a voltage divider, a familiar 

circuit, and that this simple statement makes a lot of difference to a student in comprehending 

the analytical treatment is an interesting evolution of my own teaching methodology.  

Most available texts on Electronics are aimed at Engineering students who have to go into the 

subject in great details. These texts concentrate more in the analytical aspects and numerical 

exercises while descriptions on the physical aspects and logics behind an issue are kept to a 

minimum. On the other hand there are compact volumes on Electronics for scientists which give 

a broad overview of the subject without providing adequate analytical details as demanded by a 

formal course offering in Physics. So this book will fill a gap which has been felt acutely by all 

of us teaching electronics to Physics students. 

Volume 1 deals with electrical networks that form the foundation of electronics as a formal 

subject of study. Without a proper understanding and grasp of these techniques one cannot 

proceed to the realm of electronics. It has been pointed out clearly that electronic devices cannot 

be handled directly for analytical purposes. They have to be modeled to quantities that we are 

familiar with in electrical networks, which is the subject of this volume, and then solved 



analytically. Therefore, electrical networks is very much a study of electronics and one should 

try to grasp the matters covered in this book thoroughly.   

In writing this book the syllabus of the University of Dhaka to which the author was a key 

contributor has been followed mostly. Bangladesh National University which administers all 

other colleges in the country follows the same syllabus, so this book will hopefully address the 

requirements of a large number of students. Engineering students and professionals will also 

find this book a useful addition to their existing ones, to clear out conceptual difficulties that 

contribute in creating confusions now and then, and to find logical ways to tackle analytical 

solutions on their own.  

This book will be followed by at least another volume which will deal with the rest of the 

Electronics syllabus for the Physics undergraduates in our country.  

I am grateful to the University of Dhaka for granting me a Sabbatical leave which gave me the 

time and opportunity for writing this book. My wife and children’s persistent goading to return 

to the book has helped me from diverting to other things which I do very easily. Their whole 

hearted co-operation in relieving me of many household duties has allowed me to concentrate 

and complete this first volume in time. I must also acknowledge the contribution of the hosts of 

students who attended my classes regularly filling me with enthusiasm and posing intelligent 

questions that put me into deep thinking without which I could not have answered many of the 

matters raised in this book. I am also grateful to students Samir, Sayem and Zaid, who 

painstakingly made brilliant notes from my mostly impromptu lectures and have later given me 

copies of their notes to help me in writing the book.  

I have written the texts and drawn all the graphics directly on the computer, and have taken care 

that errors are at a minimum. Since preparing the first manuscript in October 2004 I have given 

copies to many colleagues and students in order to provide me feedback on the book and to 

point out errors which resulted in improvements in several places. However, I would still 

welcome error reporting from all the readers. I am a human being, definitely my knowledge has 

gaps and limitations, so if there are conceptual or analytical mistakes, I would be grateful if the 

learned readers point these out to me together with the necessary corrections. Their 

contributions will be duly acknowledged in the subsequent editions.   

I hope to embark upon writing the second volume next, which will go directly into 

semiconductor devices and their applications. I am indeed grateful to the Almighty for the 

ability and opportunity given to me to write this first volume and pray I am granted further 

opportunities. 

 

K Siddique-e- Rabbani 

Department of Biomedical Physics & Technology 

University of Dhaka 

Dhaka, Bangladesh 
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Chapter 1: Introduction 
 

1.1 Why and how of Electronics 

Why do you want to study electronics? Firstly you may want to understand how 

different electronic equipment work. Secondly you may want to design and develop 

electronic equipment yourself. It is the latter that will take you to the real world of 

electronics and you will enjoy electronics to the most. As an electronic designer you 

dive into the world of unseen, juggle with ideas developed within your trained mind, 

and then it is a real joy to see the magic unfolding in the seen world. At the same time 

you will find that you can help everybody around you with some of your acquired 

capabilities. Again, developing a small useful gadget for the house may end up as a 

successful commercial product. Besides, you will suddenly find that you understand the 

working of almost all appliances around you whether big or small, which others 

without the knowledge of electronics can hardly comprehend. Therefore think yourself 

as lucky to have taken up a serious study of electronics.  

Electronics is a practical science leading to the world of technology. Therefore as you 

go through this book, gather a multimeter, a breadboard and few electronic components 

and try things out yourself. You may need the help of other practical oriented books to 

start with, but when you combine that to what you study in this book, you will get the 

real feeling of entering the world of electronics. 

Designing in electronics is basically organising some logical functional units to achieve 

an overall objective, a desired overall operation or function. So the first requirement is 

common intelligence and a general idea of technology which you all have already. 

Next comes the task of building up the logical functional units using electronic circuits. 

This is where your knowledge and skill in electronics comes in. You will need to know 

the following: 

A. Electrical network concepts and analysis 

B. Available electronic devices, their operations and functions 

C. Modelling of electronic devices in terms of known electrical 

parameters so that the performance of the circuit may be 

analysed before it is made out of real devices and components. 

D. Based on the above models, ways of integrating the electronic 

devices into an electrical network to achieve the desired 

objective.  

A brief note on the 3rd point: we already know simple electrical devices or components 

like voltage and current sources, resistors, inductors, capacitors, etc., and ways of 

analysing networks employing these components. Ohms law forms a basis for all these 

analyses. Since electronic devices are new to us and are varied in forms and functions, 

we do not know how to analyse them directly. So we replace these devices with simple 

equivalent models that are expressed in terms of known devices and functions. Once 

we have done it, it boils down to the same old simple techniques of electrical network 
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analysis! Such modelling is done in every branch of science. Remember the picture of 

an atom with electrons circling around a nucleus? Has any one seen an atom? – No, the 

picture you see is that of a model that we have made up in terms of concepts that we 

can understand. That means you only need to know the simple and old Ohm’s law to 

understand and analyse all electronic circuits, however complex ! 

Let us talk about a common application of electronics – a public address amplifier 

system as shown in the simplified block diagram in Fig.1-1. When a person speaks into 

the microphone it generates a minute electrical signal (with power in the range of 

microwatts), which mimics the pattern of sound waves created by the human speaker. 

This signal is first amplified to a suitable level using a pre-amplifier, then modified 

using a signal conditioner to eliminate noise or to enhance some features of the signal. 

The modified signal is then amplified sufficiently in a power amplifier stage in order to 

drive a loud speaker that converts the electrical signal to a sound signal with the 

original pattern that the human speaker produced, but with hundreds or thousands 

times the power of the original speech so that a large crowd can hear it. This is the first 

step in designing a public address system. Does it sound difficult? – Not at all, it is 

simply common logical sense.  

Next comes working out the details of each functional unit where we will use 

electronic devices integrated into an electrical network – the electronic circuit. Just as a 

sculptor or a carpenter needs to know his tools well, how to use them to create a 

masterpiece, similarly you as an electronic designer need to have a knowledge of 

available tools in electronics (electronic devices such as diodes, transistors, integrated 

circuits, etc.), and how to combine them in a circuit to get the desired performance. 

You can work out the same function in different ways using a variety of devices. Since 

the workings of these tools or devices are mostly unseen, you need to know the Physics 

of these devices. As is common with most of the physical sciences and engineering 

practices, mathematical representation and analyses help greatly in understanding, and 

designing such circuits. A study of electronics involves all of the above. 

Electronics has seen the sharpest development in the history of science and technology 

and is continuing to do so. A complete knowledge encompassing every small aspect of 

 

Pre-

amplifier 

 

Signal 

Conditioner 

 

Power 

Amplifier 

Loud 

Speaker 
Microphone 

Fig.1-1: A public address amplifier system 
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every device is not possible, as mysteries are still unfolding. Many subtle features and 

characteristics are revealed to an observant electronic experimenter, which may not be 

apparent simply by studying books. Therefore set out to designing and fabricating 

electronic circuits yourself, starting with a very simple one. You will find that it 

increases your understanding manifold, and as you go along, an inner confidence will 

build up which will easily distinguish yourself from any other learner in electronics 

who chose not to go into the designing business. 

 

1.2 Electricity versus Electronics 

Both the subjects of Electricity and Electronics deal with the movement of electrons. 

“Then what is the difference?” – people often ask. One answer frequently given is that 

in Electronics we can control the flow of electrons. Through an inductive fan regulator, 

or using a rheostat, we can also control a current, i.e., the flow of electrons, to some 

extent – but this is a domain of electricity. So the above answer is not complete. In 

modern days we can control the same current in a much better way using a TRIAC or a 

Transistor. We also did the same using a Vacuum Tube in the past. In these cases it is 

said that we have used electronic devices. So what is the fundamental issue that divides 

the two subjects? – If we look deeper into the working of the devices mentioned above, 

in an inductive fan regulator and in a rheostat electron flow occurs in metallic 

conductors, while in the TRIAC and in the Transistor, electron flow occurs in a semi-

conducting crystal, which is not a good conductor of electricity. In a Vacuum Tube the 

electron flow occurs in „vacuum‟ – an extreme non-conductor, or an insulator of 

electricity! These are against our common notions about electricity. Through special 

techniques, we have been able to move electricity in semi-conductors and in insulators, 

and these offer much greater opportunity of controlling the movement of electrons 

according to our desires. Electronic devices provide us with control over the movement 

of electrons in ways never possible with electrical devices. In a rheostat we can change 

the resistance by adding or subtracting lengths of the conductor material, while in a 

transistor we can change the resistance within the same material through the 

application of a very minute controlling current or voltage. Therefore we possibly can 

answer the question posed above as follows:  in Electricity we deal with the flow of 

electrons through conducting materials, while in Electronics we deal with the flow of 

electrons through materials that are not good conductors, i.e., semi-conductors and 

insulators. 

 

1.3 Brief History of Electronics 

It has been a continuous development that led to electronics and many a scientist‟s 

contributions may be cited. The following list attempts at putting up a chronological 

picture. 

1850: German scientist Geissler observed that the inside of an evacuated tube (not 

100% vacuum) lits up when a voltage is applied through electrodes.  
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1878: British scientist Sir William Crookes identified the above as a flow of particles 

through the vacuum. 

1895: Bengali Scientist J.C. Basu performed first radio transmission 

Around 1895: Edison observed that current passed from a plate electrode to a heated 

filament in a vacuum tube if the plate electrode is made positive with respect to 

the hot filament, and not in the reverse direction. This is known as Edison 

effect. He could not explain it and left it there.  

1904: Fleming explained Edison Effect in terms of a flow of electrons emitted from the 

hot filament material and developed the vacuum diode based on this effect, 

which could be used to convert ac power to dc power. 

1907: Lee de Forest developed the vacuum triode by adding a grid electrode to the 

diode. This made signal amplification possible, and real development in 

electronics started. 

1930: Julius Lilienfield, a former Professor of University of Leipzig who migrated to 

the US, disclosed the principle of Field Effect Transistor through a US patent.  

1943: General purpose computer made of vacuum tubes (ENIAC) 

1948: Shockley, Brattain and Bardeen fabricated the first semiconductor Transistor. 

1951: Commercial production of transistor 

1960‟s: IC production 

1970‟s: Microprocessor, a whole Central Processing Unit of a computer in an 

Integrated circuit chip 

Around 1975: Desktop microcomputer 

 

1.4 Vacuum diode 

Let us try to explain the inner working of the Vacuum Diode, where electron flow 

occurs through vacuum, an insulator in normal terms. Fig. 1-2a shows an evacuated 

glass tube with a filament at one end, and a plate electrode at the other.  The filament is 

heated using a battery BF as shown. When hot certain materials release electrons (called 

‘thermionic emission’) and thus the filament produces an electron cloud around it. If 

now another battery BP is connected with polarity as shown, the plate electrode 

becomes positive with respect to the filament. This creates an electric field between the 

filament and the plate which drives the electrons in the cloud towards the plate within 

the evacuated tube. The positive plate takes up the electrons and pushes them towards 

the positive terminal of the battery through the meter and the resistor shown, and of 

course, through the connecting wires made of conductors. On the other side of the 

battery, electrons pushed downwards by the negative terminal of the battery flow 

towards the filament and replenish the electron cloud. Thus a continuous flow of 
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electrons takes place in the loop (circuit), and an electric current is established through 

the vacuum tube (an insulator!) by the battery BP. 

On the other hand if the polarity of the battery BP is reversed (Fig.1-2b), no current 

flows. This is because the electric field established between the plate electrode and the 

filament forces the negative electron cloud away from the plate. Thus we have a current 

flow if the battery is connected as in Fig. 1-2a and no current when it is connected in 

the reverse direction as in Fig.1-2b. Interestingly Edison observed this phenomenon but 

could not explain the mechanism that we just described above, as he did not have the 

necessary scientific background. He just noted the experimental observation in his 

diary and left it there. It was later named „Edison Effect‟.  

The positive plate at the top is called the ‘anode’ while the filament, connected to the 

negative end of BP is called the ‘cathode’. The battery BF and its circuit heats the 

filament only, it does not have any other function. The Edison effect was duly 

explained later and a practical device called the Vacuum Diode was invented by 

Alexander Fleming in 1904. The vacuum diode was used by Fleming to convert an ac 

power to dc power, the process being called rectification (as if ac was impure and dc 

was pure!).  

In later devices, the filament was covered by an electrode material which is more 

efficient in emitting electrons, and this electrode was heated indirectly by the filament. 

The negative of the plate battery BP was connected to this electrode instead of the 

filament and this new electrode was then called the cathode. Diode (di-ode) stands for 

‘two electrodes’ – the cathode and the anode necessary for the main current. The 

filament is treated as a supporting mechanism and is not counted in the naming of the 

Fig.1-2a: Electron flows through vacuum due to a favourable electric field. 

Fig.1-2b: No electron flow due to a reverse electric field. 
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device. In a practical diode the filament is usually arranged in a vertical configuration 

and a cylindrical cathode covers the filament closely without touching it. The anode is 

another co-axial (having the same axis) cylinder with a slightly larger radius. 

Box 1.1: That the direction of electron flow is opposite to the direction of conventional 

electric current usually confuses the student. The electric current was conceived of earlier 

than the discovery of electrons. At that time electric ‘current’ was thought to be the flow of 

‘positive charges’ from the positive terminal of a battery to its negative terminal through the 

conductors in the outer circuitry. Later it was revealed that in solid metallic conductors 

positive charges do not move, they are associated with the fixed nucleuses of atoms. It is the 

negatively charged electrons in the loosely bound outermost orbits of a conductor (called free 

electrons) that move in the opposite direction to cause the current. The scientific community 

has a tendency to preserve history unless compelled otherwise. So, it was argued that 

imagining a flow of a positive charges in the conductors do not affect the results of relevant 

mathematical analyses, and in doing so we can keep some historical „rules‟ unchanged. Thus 

the wrong direction for current was maintained and accepted generally. 

Hopefully this should clear the confusion. We all say of a  ‘conventional current direction’ 

while at the back of our mind we know that this is wrong! This is a „lie’ that we all have 

agreed to perpetuate. 

However, it should be borne in mind that in a liquid conductor, called an electrolyte, both 

positive and negative charges (in the form of ions) move to constitute the current. 

Fig.1.3 shows a rectifier circuit to convert ac power to dc power employing such a 

vacuum Diode. The load resistor is connected between the cathode and the common 

terminal (common to both input ac source and the output). The ac source provides both 

positive and negative voltages on the anode alternately with respect to the cathode. The 

vacuum diode conducts only when the anode is positive as described above. Therefore 

the resulting current flows through the load resistor only in one direction half the time 

Fig.1-3: Rectification using a vacuum diode. Note direction of 

conventional current as against electron flow in previous diagrams. 
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in each cycle, while no current flows during the other half. Thus a unidirectional 

current or a dc is produced in the load resistor, though its magnitude varies with time. 

The voltage existing at the source (applied to the plate) and the voltage developed at 

the load resistor (both with respect to the common point, or ground) are shown 

graphically on the right hand side of Fig.1.3 for a sinusoidal ac source. The 

conventional current direction is shown in this figure (which is reverse to the direction 

of electron flow, see box). Since current is allowed to pass only in one direction and 

not the other, a vacuum diode was also called a ‘valve’ – a term generally associated 

with water valves having a similar function. 

1.5 Vacuum Triode and Amplifier 

By adding a mesh of wire (called a ‘grid’) surrounding the cathode at close proximity 

(Fig.1.4) it became possible to control the flow of anode-to-cathode current 

significantly by applying a small negative voltage to the grid with respect to the 

cathode (typical anode voltage ~few hundred volts, grid voltage ~few volts). The 

electrons could still flow from the cathode to the anode through the holes in the grid 

mesh because of the large attractive force created by the high anode voltage, but 

because of its close proximity to the cathode, the negative grid could easily influence 

the magnitude of electron flow by the repulsive force it provided. By varying this grid 

voltage in a pattern according to our desire, it is possible to vary the large current 

flowing in the anode-cathode circuit in the same pattern. In Fig.1.4 a small ac input 

voltage is added to the negative dc voltage applied to the grid. The grid takes negligible 

current, so the source has to deliver only a small power. However, this grid voltage 

compels the anode current through load resistor RP to vary in proportion to the ac input 

Fig.1-4: Amplification using a vacuum Triode.  
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voltage. This will also cause the anode voltage to vary. The relevant voltages and 

currents are also shown through graphs in Fig.1.4. The variations  in anode voltage 

comes in association of a dc voltage, called a dc bias, which can easily be removed 

later to obtain the desired ac pattern at the output. The same applies for the anode 

current. The anode power is very large because of the high anode voltage (obtained 

from battery BP) and current. Thus a small varying power applied to the grid can 

control a much larger power obtained from the battery BP.  

Here the power in the output signal (the varying pattern) is much larger than the power 

in the input signal. One can say that the small ac input signal has been multiplied or 

amplified many times at the output. This is usually called ‘amplification’ and this 

capability has allowed electronics to bring a technological revolution to the whole 

world. Lee-de-Forest is credited with the invention of this vacuum triode (standing for 

„three electrodes’) in 1907. 

Vacuum tubes with more electrodes were devised to improve performances. Different 

sizes of vacuum tubes were available, starting from finger-sized miniature ones to giant 

chest sized ones used for powerful radio transmitters. With the advent of 

semiconductor devices the vacuum tubes have almost become obsolete except in 

applications like high-powered radio transmitters. The cathode ray tube used in 

Television receivers and in computer monitors is also a special kind of vacuum tube. 

However, it is also getting a serious challenge from various semiconductor and organic 

semiconductor displays and may become obsolete in not too distant a future. 

Interestingly vacuum tubes have recently made a comeback into our homes through 

microwave ovens where special vacuum tubes known as „Klystrons‟ generate the high 

power microwave radiation which heats up food without heating the containers.  

In this book we shall not go any further into vacuum tubes, rather we shall concentrate 

on semiconductor devices, which are still ruling modern electronics, and are expected 

to stay on for quite a long time. However, before we go into the heart of electronics we 

need to review and build up some background knowledge on electrical networks and 

circuits, which form the topic of the next few chapters. 

Does amplification defy conservation of energy? Have we created a much higher energy out 

of a small input energy in a vacuum triode amplifier? - Not at all. The higher energy comes 

from the powerful battery BP, and the small input energy has exercised a control over the 

battery to deliver power in its own pattern through the use of the vacuum triode. There lies the 

power of electronic devices! 

Doesn’t a transformer do the same? No. In a transformer the output power is equal to the 

input power (this is for the ideal situation, practically some percentage is lost), i.e., there is no 

power amplification as in an electronic amplifier. Thus in a transformer if the output voltage 

is greater than the input voltage, the output current has to be less than the input current. On  

the other hand in an electronic amplifier both output voltage and current can be greater than 

the corresponding input voltage and current. Thus there is power amplification. 
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Chapter 2: Background 

Electrical Networks  

In this chapter we will review some background knowledge on electricity and electrical 

networks that have a direct bearing on what we are going to study. 

2.1 EMF and Potential drop  

EMF stands for Electro-Motive Force. EMF is a property of an electrical source 

(battery cell or generator) which can create and maintain a difference of electrical 

potential between two points and the EMF is taken to equal this potential difference. A 

common dry battery cell has the ability to create and maintain a potential difference of 

1.5 volts between its two terminals (Fig.2-1) which is its EMF (e).  

Because of the EMF, an electrical source 

can drive a current through an electrical 

load. In Fig.2-2 the battery (represented by 

its symbol) drives a current I through 

resistors R1 and R2 in series, which together 

act as the load. As a result there are 

potential drops, V1 across R1 and V2 across 

R2, given by IR1 and IR2 respectively. So a 

potential drop (also called a voltage drop) is 

always associated with a load when a 

current flows through it. In Fig.2-2 the 

EMF, 

e =  V1+V2  = IR1 + IR2  

assuming the battery cell to be ideal without 

any internal resistance. The EMF and the 

potential drop have the same unit, volts.  

A 

+ 

B 
_ 

EMF 

e =1.5V 

 

Fig.2-1: EMF of a dry 

battery cell 

e I 

R1 

R2 V2 

V1 

V1 + V2 

Fig.2-2: EMF and potential drop 

e =  V1+V2  = IR1 + IR2 

V1 + V2 

Fig.2-3: Zero potential drop if I = 0 

e I=0 

R1 

R2 

V1 + V2  =  IR1 + IR2 = 0 + 0 

switch 
off 
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If no current flows (I = 0) through a resistor no potential drop appears across it. In 

Fig.2-3 the current has been stopped by breaking the circuit at a suitable point using a 

switch. The EMF or the potential difference across the battery is still 1.5V but the 

potential drop across R1 and R2 is zero, ie, V1+V2 = 0 since both IR1 and IR2 are zero. 

You can stop the current flow by breaking the circuit at any other point in the circuit 

and it will give the same result. 

Box 2.1 The electrical potential is very similar to gravitational potential energy. 

Compare the above example to the gravitational potential drop of a massive object 

when you drop it from the rooftop of a two-storied house. We can associate a 

potential drop for falling through each floor. If you are the agent carrying the 

massive object to the rooftop, you are acting as the source of Gravitational motive 

force (equivalent to the battery in the circuit) raising the gravitational potential of 

the object. 

Some books define EMF as the voltage measured across a battery cell when it is not 

connected to any circuit. In fact this is not a definition, rather it is a way of measuring 

EMF. All practical battery cells have some internal resistance (or source resistance, Rs) 

and an equivalent circuit of such a cell is shown in Fig.2-4a where the internal 

resistance is shown in series with an ideal cell. The EMF of the ideal cell is still e, but 

you cannot access the internal terminal X of this battery cell, you have access only to 

the external terminals A and B. If you do not connect the cell to any circuit (open 

circuit), no current flows through Rs and therefore there is no potential drop across Rs. 

Therefore the voltage measured across A and B is equal to the EMF. However, if you 

connect the battery cell to a resistor circuit so that a current flows as shown in Fig.2-4b, 

a voltage IRs is dropped across the internal resistance, and the measured voltage across 

terminals A and B of the cell, 

V = e – IRs 

which is obviously less than the EMF. Therefore to measure the EMF, no current 

should flow, i.e., a cell cannot be connected to any closed circuit. 

Fig.2-4: Practical battery cell with internal resistance 

Rs 

A 

X 

B 

e 

a 

V =  e  IRs  

I 
A 

X 

B 

R 

V 

Rs 

IRs 

e 

b 
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A voltmeter has also an internal resistance, Rm. Therefore a current, however small, 

flows through the voltmeter when we attempt to measure the EMF of a cell as shown in 

Fig. 2-5. The measured voltage, Vm, is basically the voltage dropped across this 

voltmeter resistance Rm (ie, Vm = IRm = e – IRs). Thus the measured voltage is always 

less than the EMF. To measure the EMF accurately, an ideal voltmeter is needed which 

has infinite internal resistance so that the current equals zero, which is never possible. 

Practically, if a voltmeter with a very high internal resistance is used so that Rm >> RS, 

then the voltage drop across RS will be negligible and the measured potential would 

represent the EMF effectively. There is a very good age-old technique using a 

potentiometer circuit where no current is taken from the cell by balancing against an 

exactly equal potential, but the procedure is not straightforward for quick 

measurements.  

2.2 Ground  

Potential does not have any absolute value, it is always expressed between two points. 

In Fig.2-6 the potential difference between the points A and B is 1.5 volts, we can say 

that VAB = 1.5V. For convenience we usually choose a single point in a circuitry as the 

reference point where we choose the potential to be zero. Potentials at all other points 

are expressed with respect to this single point. This point is usually called common 

point, ground or earth in a circuit and one of the symbols frequently used is shown in 

Fig.2-6 where we have chosen the point B to be the ground (i.e., VB = 0). Once we have 

chosen a ground in a circuit, we do not need to mention the potential difference 

between two points all the time, we can just say that „the potential at such and such 

point is so many volts‟. This would naturally mean potential with respect to the ground. 

Thus in Fig.2-6, VA= +1.5V is enough to describe the potential at point A with respect 

to the ground. We can also see that  

since VB = 0,   VAB = VA – VB = VA.  

Potentials at other points can be similarly defined. Thus,  

VD = V2  and  VE = V1+V2. 

Fig.2-5: Voltmeter 

measurement 

I 

Rm 

Vm 

Rs 

e 

Voltmeter 

Fig.2-6: Ground reference  

e 

R1 

R2 
V2 

V1 

A 

B 

VA=1.5V 

VB=0 C 

D 

E 



Electrical Networks Chapter 2 

 12 

To describe potentials between any two points not including the ground, we have to 

express using the difference as before. Thus  

VE – VD = VED = V1. 

Here we would like to mention that in all drawn circuits we assume the line segments 

as connections having zero resistance, and therefore potentials at all points along an 

unbroken line is the same. Thus in Fig.2-6, points B and C have the same potential, 0V 

while points A and E are both at 1.5V.  

As mentioned above, choosing the ground is entirely a matter of convenience. We 

could have chosen any other point as the ground, but once we choose one, we have to 

stick to it for the entire circuit. Thus in Fig.2-7 we have chosen point A as the ground 

(VA = 0), so that VB = – 1.5V, but we cannot choose both A and B as grounds 

simultaneously in the same circuit. 

We would like to emphasise one further point before we leave this section, if there is 

no current through a resistor, the potential drop across it is zero and therefore potentials 

at both its ends are the same. Thus in Fig.2-8, since the circuit is broken in the middle, 

VD = VC = 0V while VD1 = VE = 1.5V. The whole picture will change as soon as we 

connect together points D and D1. 

2.3 Single or multiple cell symbol?  

Fig.2-7: Choice of Ground  Fig.2-8: Voltage at break 

A 

B 

VA= 0 

VB= 1.5V C 

D 

E 

R1 

R2 

A 

B 

VA=1.5V 

VB=0V C 

D 

E 

D1 

VD= VC 

VD1=VE 

Fig.2-9:  

Single (a) or 

multiple cell (b) 

symbols and dual 

power supplies (c) 

+VSS 

a 

+VSS 

b 

+VSS 

VSS c 
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It needs to be mentioned that though it is logical to show the symbol of a single 

electrical cell as in Fig.2-9a and a battery (multiple) of cells as in Fig.2-9b, this is not 

given much importance. We do not bother at all regarding the number of cells. We just 

use either of the symbols. However, to show a suggestion for high voltages where 

required, people often use the multiple cell symbol, having many cells. 

2.4 Dual power supply 

Sometimes we need both a positive and a negative dc supply in the same circuit. This is 

achieved by connecting two dc power supplies (or batteries) together with their 

common point grounded as shown in Fig.2-9c. This is called a dual power supply. In 

this figure, the two supply terminals are shown at +VSS and –VSS respectively with 

respect to the ground. 

2.5 AC fundamentals 

What is an ac? We know it stands for alternating current, but what happens 

physically? When we have a dc battery as the power source in a closed circuit, the 

current always flows in one direction in the circuit-loop (that is the reason for the name 

direct current). On the other hand, the polarity of an ac generator reverses repeatedly 

(for which it is sometimes called an alternator) so that the current through a closed 

circuit alternates in direction  once clockwise then anticlockwise. For this alternately 

changing direction of current we call it an alternating current or ac. However, ac has 

become more of an adjective than a noun, and we frequently use terms like ac voltage 

and ac current, none of which strictly make any sense if we expand the abbreviation. 

Mathematically, an ac voltage means that the voltage changes in magnitude with time, 

once becoming positive then negative, then positive again. An ac current is similarly 

+VP 
 

0 
 

-VP 

VB + VP 
 

VB 
 

VB - VP 

VB 

 
0 

a 

b 

c 

t 

t 

t 

T 

va 

va+VB 

pure ac 

pure dc 

ac + dc 

Fig.2-10: Pure 

Sinusoidal ac, 

pure dc and 

combined ac + dc 

(or, varying dc) 

represented 

graphically 
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defined. Which direction is taken to be positive and which one negative is arbitrary, it 

is simply a matter of choice, but once we define a direction, that becomes the reference 

for all further descriptions involving that circuit. Again the pattern of change of this 

voltage or current may be anything, sudden or slow. A very common pattern is called a 

sinusoidal shape or waveform where the quantity (voltage or, current) changes exactly 

like a Sine function in mathematics. The ac generator mentioned above also produces 

sinusoidal ac waveforms.  

A sinusoidal ac voltage v is given by, 

v = VP Sin  t  ... 2.1 

where VP is the peak value of voltage and  is the angular frequency in radians per 

second. Again,  equals 2 f where f is the frequency in number of repetitions per 

second. This is usually expressed in the unit of Hz (Hertz). We also see square, 

triangular or saw-tooth or other complex ac waveforms. 

Fig.2.10a shows the time response of a sinusoidal ac voltage, va , having peak voltages 

of +VP and –VP on positive and negative sides respectively. It repeats with a period T 

such that the frequency, f = 1/T. Most of the analyses of ac circuits performed in 

electronics also assume sinusoidal shapes for voltages and currents, as this shape is 

mathematically simple to handle. Besides, all complex waveforms can be expressed as 

a combination of many pure sine waveforms with different amplitudes and frequencies 

(Fourier’s theorem).  

Just for comparison, Fig.2.10b shows the time response of a pure dc voltage, VB. We 

can see that it has a constant value which remains unchanged with time (obviously, it 

does not change direction). Such a dc is called a smooth dc. On the other hand, we may 

have a varying dc, where the magnitude changes with time, but remains always on one 

side of the time axis. Fig. 2.10c shows a sinusoidally varying dc voltage. Physically, in 

a varying dc the current is also varying in magnitude, but flows in only one direction in 

the circuit. A varying dc may also be considered as a sum of an ac and dc. As in 

Fig.2.10c, we can write the total voltage as Vtot = va + VB where VB is a dc which forms 

a baseline above which va, a sinusoidal ac is superposed. The dc baseline is also called 

a dc bias, or simply bias, in all electronic analysis. 

Almost all electronic devices (vacuum diodes, transistors) are basically dc devices, 

they can work only in one direction. Therefore to amplify ac signals (where current 

flows in both directions) we have to add a dc bias to it so that the resulting voltage is a 

varying dc as shown in Fig.2.10c. When the whole job of amplification is complete, the 

dc is blocked using any suitable technique, either using a capacitor-resistance circuit or 

a transformer, and a pure ac is taken out at the output. 

Any periodic ac will have a frequency f as defined above. Sometimes we like to 

describe dc as a special case of ac. We say that as f approaches 0, an ac becomes a dc. 

This is particularly useful in mathematical analysis. For ease of understanding, we try 

to follow a standard convention in designating ac, dc and mixed electrical quantities 
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using symbols. These are given in Box 2.2. For mathematical analysis, sometimes we 

represent ac quantities using Complex numbers, and the conventions are also given in 

the same box. (See Chapter 4 for the basics of Complex representation) 
 

 

Box 2.2 Convention for ac and dc variables 

In this book we will follow the conventions for representing voltages and currents 

by variables with appropriate subscripts as given below. 

Pure dc:  

Variable: Capitals, Subscript: Capital.  

Example: VIN, VOUT, VAB, IAB, VC, IC, etc. 

Pure ac: 

Variable: Small, Subscript: Small. 

Example: vin, vout, vab, iab, vc, ic, etc. 

Mixed dc + ac:  

Variable: Capitals, Subscript: Small. 

Example: Vin, Vout, Vab, Iab, Vc, Ic, etc. 

Complex form(ac): 

Variable: Bold capital, Subscript: bold capital  

Example: VIN, VOUT, VAB, IAB, VC, IC, X, Z, etc. 

While writing by hand you cannot use bold faced font. Use a bar instead, either 

below or above, such as V , I , X , Z , etc. 

Magnitude (absolute value) of a Complex quantity: 

It is simply shown without the bold face. 

Example (for variables given above): VIN, VOUT, VAB, IAB, VC, IC, X, Z, etc. 
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2.6 Ohm’s Law 

In Fig.2-11, a source of EMF creates a potential difference V across a conductor (if the 

source is ideal, having zero internal resistance, then V = e, otherwise V < e). This 

potential difference V causes a current I to flow through the conductor. Ohm‟s law 

states that temperature remaining constant, the current through a conductor is 

proportional to the potential across it.  

This means,         I   V         ... 2.2a 

This is the basic form of Ohm‟s law. Note that there is no mention of resistance in this 

law. When we form an equation from this law we define Conductance, G, as the 

proportionality constant,  

VGI    ... 2.2b 

where G relates to a property of the conductor which determines how much current it 

will allow to pass due to a certain applied voltage across it.  

Resistance, R, is defined as the inverse of Conductance as, 

G

1
R      ... 2.2c 

so that in terms of R, 2.2b becomes 

V
R

1
I    ... 2.2d 

This is the more well known equation formed from Ohm‟s law. R is a characteristics of 

the conductor which attempts to oppose a current through it (I decreases if R increases), 

therefore the name Resistance was chosen for this property of the conductor. A piece of 

material having this property is called a Resistor. Therefore the name resistor is a 

product of Ohm‟s law [note that we use conductor and resistor to represent the same 

thing]. The basic statement of Ohm‟s law is graphically shown in Fig.2-12 (I – V 

Fig.2-11: Ohm‟s law 

definition  

V 
e 

I 

I   V 

Fig.2-12: I-V curve of an 

Ohmic conductor 

I 

V 

Constant  
temp 



Chapter 2 Electrical Networks  

 17 

curve). We can see that the graph is a straight 

line passing through the origin extending to both 

the 1
st
 and 3

rd
 quadrants. The line has a positive 

slope and the inverse of the slope is the 

resistance R. A material having such features is 

called an Ohmic conductor. 

If the I – V curve of any material deviates from 

this straight line behaviour it is called a non-

Ohmic conductor. Thus a semiconductor diode 

(to be described later) having non-linear I – V 

curves (Fig. 2-13) is said to be non-Ohmic in 

nature. 

 

Box 2.3 The statement V = IR is not strictly Ohm‟s law as is popularly used, it is an 

inference of Ohm‟s law. The same can be said about R = V/I . However, these 

forms are useful in finding any one of the three parameters when the other two are 

known. You should also note that in Eq.2.2, V is the independent parameter and I is 

the dependent parameter, as I depends on V, so they are drawn with the axes as 

shown in these graphs. We usually do not plot with the axes other-way round. 

Fig.2-13: I-V curve of a  

non-ohmic conductor 

I 

V 

Constant T 

Box 2.4 Incidentally some books tend to show a non-linear behaviour for tungsten 

filaments of light bulbs (Fig.B-2-1) implying that it is non-ohmic. This is not right 

and they miss out one important point – the temperature is not constant throughout 

the curve, it increases with increasing voltage. Had the temperature been kept 

constant (through appropriate heat removal), it would have been a straight line. Of 

course, we would get separate straight lines with different slopes at different 

temperatures indicating that the resistance vary with temperature. For a metal the 

slope decreases, i.e., the resistance increases with temperature (Fig.B-2-2). 

Fig.B-2-1: I-V curve of a 

tungsten filament bulb 

Temperature not constant  

I 

V 

Fig.B-2-2: Ohmic conductor at  

different  temperatures 

I 

V 

Different Const Temp 
T 
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2.7 Incremental resistance from I – V curve 

Even for a non-linear I – V curve we can define an incremental resistance by taking the 

inverse of the slope of the tangent at any point on  the curved line as, 

1











dV

dI
r   ... 2.3 

which may change with voltage unlike an ideal resistor whose value is constant. This is 

also shown in Fig. 2-13 where the tangent represents the slope at the point of interest. 

For an ohmic resistor, this is the same as the normal resistance obtained from R = V/I.  

You may ask why we did not use dV/dI in Eq.2.3. Well, according to Ohm‟s law, I is 

dependent on V (V does not depend on I), so there can be dI/dV, and not dV/dI. 

 

2.8 Series and parallel combination of resistors, which one dominates? 

You know that a series combination of two resistors R1 and R2 (Fig.2-14a) is simply  

Rser = R1 + R2    ... 2.4 

and a parallel combination is (Fig.2-14a), 

21

21

1

21

par
RR

RR

R

1

R

1
R















 ... 2.5 

 

If they have widely different values which one dominates? In series combination it is 

obviously the larger one. If you have to cross equal lengths of a very difficult route and 

an easy route respectively to go to your destination, it is always the harder one which 

will bother you and will determine the difficulty of your journey. The same happens for 

electrons! Suppose R1 = 1000 and R2 = 100, the equivalent combined resistance is 

1100 which is closer to the larger 1000 value. 

On the other hand when you have two resistors having widely different values in 

parallel (Fig.2-14b), it is always the 

smaller resistor that dominates the final 

equivalent value. Suppose you have two 

parallel roads – a very rough one and a 

smooth one. If a hundred students are 

asked to go to a destination on the other 

end of these parallel roads, which one 

will most of them take? – Obviously, the 

smooth one with less resistance. 

Electrons do the same! Taking the 

previous values for R1 and R2, the parallel 

Fig.2-14: Series (a) and parallel (b) 

combination of resistors 

a 

R1 

R2 

R1 R2 

b 
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combination is 90.9 which is closer to the smaller 100, supporting the above 

argument. Note also that the combined result is less than even the smaller one in the 

group. This you should remember to verify your results. You can take note of another 

point, 1000 is 10 times greater than 100, and the equivalent value is about 10% 

below 100. This information comes handy in making quick estimates when you 

design a circuit. 

2.9 Constant Voltage source 

As shown in Fig.2-15 an ideal battery cell with zero internal resistance (RS = 0) can be 

considered a Constant Voltage Source (shaded portion) as its output or load voltage 

will remain equal to its EMF irrespective of the load resistance. In practice such a 

source can never be found, therefore, a Constant 

Voltage Source can be defined as a source of 

EMF with an internal resistance RS (shaded part 

in Fig.2-16) such that for all practical values of 

load resistance (RL) in a particular application, 

the voltage dropped across RS is negligible. This 

is clearly possible for RS << RL , which is the 

requisite condition for a Constant Voltage 

Source. Therefore, for a good constant voltage 

source RS should be as low as possible. For a 

fixed e and RS the above condition will be 

satisfied if RL is above a certain minimum value 

RLmin as shown in Fig.2-17a. Below RLmin the 

load voltage will decrease and can no more be 

called constant.  

Since the load current,  

LS

L
RR

e
I


  ... 2.6 

Fig.2-17: Characteristics of 

a practical constant voltage 

source, with RL (a) and 

with IL (b) 

V 

RL 

RLmin 

a 

V 

IL 

ILmax 

b 

Fig.2-16: Practical Constant 

Voltage Source, RS<<RL 

e 

RL 
VL 

RS 

IL 

Fig.2-15: Ideal Constant 

Voltage Source, RS = 0 

RL 
VL 

VL = e 

e 
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it is clear that for the above situation, there will be a corresponding maximum load 

current ILmax (Fig. 2-17b) above which the source will no longer act as a Constant 

Voltage Source. How much reduction in load voltage can be tolerated depends upon 

the particular application. For some applications, 10% may be satisfactory, for some 

1% may be adequate, some may require 0.1% or even lower figures. It should be noted 

that for a constant voltage source, the load current would vary if RL changes.  

2.9.1 Constant Voltage Source for ac: In an ac 

source the voltage is always changing, so how do we 

define a constant source? If the amplitude (peak 

value) of an ac remains constant, we call it a constant 

voltage ac source. Obviously its rms or average 

values would also be constant.  The symbol of a 

sinusoidal ac constant voltage source is shown in Fig. 

2-18. Though the direction continuously alternates, 

we need a reference direction for algebraic analyses. 

Therefore you will see that we have placed a “+” sign 

on one side of the source. Do not confuse it with a dc 

source!  

2.10 Constant Current source 

An ideal Constant Current Source will supply a constant current to any load 

irrespective of the value of RL as shown in Fig.2-19 (shaded part); again it cannot be 

achieved strictly in practice. Besides, we do not know of any simple source besides a 

battery which can provide a current, but a battery is very nearly a constant voltage 

device. Therefore in terms of a constant voltage source with an internal resistance RS 

(shaded part in Fig.2-20) we can visualise a practical constant current source such that 

RS >>RL. From equation 2.6 above we can see that under this condition  

S

L
R

e
I      ... 2.7 

which is constant if e and RS are fixed. We can show the behaviour graphically as in 

+ 

Fig.2-18: Symbol 

of a sinusoidal ac 

constant voltage 

source 

Fig.2-20: Practical Constant 

Current Source, RS >> RL 

RL 

RS 

IL 
+ 

 e 

Fig.2-19: Constant Current Source, 

I = constant for any RL 

RL 

+ 

 

IL 
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Figs. 2.21.  With reference to Eq.2.6 we can see 

that a maximum load RLmax exists beyond which it 

can no longer be called a constant current source. 

As opposed to the constant voltage source, to keep 

the current constant for different RL, the load 

voltage will vary in a Constant Current Source 

(since V = IRL).  

Here it can also be noted that for a good constant 

current source, RS should be as large as possible. 

However, this also lowers the value of current IL 

which can then only be increased by increasing e 

to a large value. We can also visualise that an ideal 

Constant Current Source can be made up of a 

constant voltage source with infinite internal resistance though it would be of no use as 

the current would be zero. You can make a good practical constant current source using 

large external resistors in series to the source of EMF. To overcome the current 

limitation problem, special circuits have been designed 

using semiconductor transistors which can provide 

large constant currents even with low voltage sources.  

You should note that the sign of potential developed 

across the load would depend on the current direction. 

For the current source direction shown by the arrow in 

Fig.2.19, the sign of the potential developed across RL 

is also shown in the figure. Alternative symbols for a 

current source are also used as shown in Fig.2-22 

where the directions of current are implied (for the 

triangular one the apex gives the direction). 

2.10.1 Constant Current Source for ac: The same symbol is used for both ac and dc. 

The peak, RMS, or average current values are constant, as for an ac voltage source.  

2.11 Source Resistance Measurement 

The source resistance RS , if it is unknown, can be measured in both the above cases 

using a very simple technique.  

We know that VL = IL RL , and using equation 2.6 we get, 

LS

L
L

RR

R
eV


   ... 2.8 

We can see that,  

when  RL =  (open circuit),  VL  e, 

and  VL = e / 2  when  RL = RS 

Fig.2-21: Characteristics of 

a practical constant current 

source 

IL 

RL 

RLmax 

Fig.2-22: 

Alternative symbols 

of a constant current 

source 
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The following technique evolves from the above analyses and is widely used 

experimentally. In either Fig. 2-16, or Fig.2-20, open the load, connect a voltmeter with 

a very high input resistance and measure the output voltage, which can be treated as the 

open circuit voltage. Next, connect a variable RL and adjust it to obtain an output 

voltage exactly equal to half the open circuit voltage. Take the load resistance out from 

the circuit and measure its value. This would give you the value of RS. (If you measure 

RL while connected to the circuit a wrong value will be obtained because of RS 

connected in parallel, and the EMF of the source may complicate the measurement.) 

Do not try the above method with batteries and voltage supply units, which will 

require very high currents in bringing down the output voltage to 50%, and you 

may damage the equipment and cause a fire hazard. In such cases, first measure the 

open circuit value, and then bring the output down to about 95% of the open circuit 

value by adjusting RL. These measurements will give you two equations based on 

equation 2.8, which you can easily solve to get RS. We will leave it to you to find 

an analytical solution. Try it! 

2.12 Kirchoff’s laws 

Kirchoff’s laws are direct descendants of Ohm’s law to make analyses simpler in 

certain circuit situations. 

2.12.1 Kirchoff’s voltage laws 

Kirchoff’s law for voltage says the sum of all the voltages within a closed circuit loop, 

considered with appropriate signs, is zero, or, 

 
i

loopclosediV 0   ... 2.9 

This is natural to expect because when you move out from a point and come back to the 

same original point there cannot be any net gain or loss in potential energy. Now let us 

apply this law to sample circuit-1 shown in Fig. 2-23. We have to assume any reference 

direction for the current in the loop to start with (for complex circuits with branches, 

you have to consider the currents through each component separately, as appropriate). 

Because of the assumed current direction, the 

high and low potential ends of any resistor in 

the path will be determined as shown in the 

figure. Let us start our journey from a and 

travel clockwise through bcd to come back to 

the starting point. As we make our first 

journey through V1, we have the freedom to 

choose this potential difference as either 

positive, or negative. However, once we 

make the choice, we will have to stick to the 

same choice for the rest of the journey. Let 

Fig.2-23: Sample circuit-1  
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us choose V1 as positive as we go from a lower potential at a to a higher potential at b. 

Then as we go along, the potential drop across R makes a travel from a higher to a 

lower potential, so we have to give it a negative sign. Travel through V2 is also similar, 

so it gets a negative sign too. Finally travel through V3 is again from a low to high 

potential giving it a positive sign. Thus we get, 

V1 – IR – V2 + V3 = 0 

wherefrom,  I = (V1 – V2 + V3)/R 

The result is the same whatever current 

direction you choose and wherever you start 

from. Fig.2-24 shows the same circuit but here 

we have chosen the reference current in the 

opposite direction, and we would also start 

from a different point. Let us start form point c 

and choose an anticlockwise travel through 

points bad. Following the above convention (+ ve for going from low to high potential) 

we get,  

– I R –V1 –V3 +V2 = 0  

wherefrom,    I = – (V1 – V2 + V3)/R 

Had we chosen the opposite convention  (+ ve for going from high to low potential) the 

result would have been the same (try it!). The magnitude of the current calculated in 

both the above procedures is the same; only the sign is different. This is because we 

chose a reference current in the opposite direction in the latter case. Following such 

methods you can determine the voltage loop equations in any circuit. Remember, if a 

circuit is not closed, you cannot apply Kirchoff’s voltage law there. 

2.12.2 Kirchoff’s current law for nodes 

This law applies to a node (junction) of a circuit 

where currents come in and go out through 

different branches as shown in Fig.2-25, and 

states that the total current going into a node is 

zero, i.e., 

 
i

nodeiI 0   ... 2.10 

This is also common sense, if there is a net non-

zero current going into a node, there will be a 

build up of charge there. Where would this excess charge go? Here the reference 

direction has been taken as the current going into a node for algebraic analysis, current 

going out of the node would be taken as negative then. In practice there has to be 

currents in both directions, charges brought in by one or more branches have to be 

Fig.2-24: Sample circuit-2  
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carried away by the remaining branches. If the total algebraic sum of such currents is 

non-zero in a given problem, the problem itself is wrong! 

2.13 Voltage Divider Network 

In spite of its simplicity, this circuit needs special attention. You will need it almost in 

any circuit design or analysis, therefore you have to familiarise yourself with different 

approaches to this circuit and its variations. In 

Fig.2-26, the loop current, 

21 RR

e
I


    ... 2.11 

Therefore, voltage V1 across R1 and V2 across 

R2 can be given as: 

V1 = I R1  ... 2.12a 

and  V2 = I R2  ... 2.12b 

where  e = V1 + V2   ... 2.12c 

You can substitute the value of current I from 

Eq.2-11 to see the values of  V1 and V2 in 

terms of e and the resistors. Equations 2.11 and 2.12 show how a voltage e can be 

divided into two parts using a circuit as shown in Fig.2-26; hence the name ‘voltage 

divider’. Here V2 is especially useful in many circuits as this may be an output voltage 

where e is the input voltage with a common ground, and is given by, 

2

121

2
2

R

R
1

e

RR

R
eV






  ... 2.13a 

which can also be written as a ratio of output to 

input voltages, called the voltage gain, 

2

121

22

1

1

R

RRR

R

e

V






  ...2.13b 

It can be seen from equation 2.13 that if e and R1 

are kept fixed, V2 increases if R2 increases. If both 

R1 and R2 vary then V2 increases if the ratio R1/R2 

decreases. 

Fig.2-26: Voltage Divider 
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This is the basis of all gain control circuits using a variable three terminal resistor, 

called a potentiometer as shown in Fig.2-27 where the central contact (called ‘brush’) 

can be moved to vary the ratio R1/R2 from  (infinity) with the brush at the lower 

extreme, to 0 with the brush at the upper extreme. If the input voltage is vin the 

corresponding output voltage then varies from 0 to vin.  The volume control in your 

radio or amplifier uses this very device. 

Equations 2.13 also gives us, 

2

1

2

1

R

R

V

V
   ... 2.14 

which has to be remembered very well. The ratio of potentials or voltages across the 

two resistors is equal to the ratio of their resistance values, which means that the higher 

resistance of the two drops more voltage. Besides, the sum equals the input voltage. 

Example: If e = 10V, R1 = 6k and R2 = 4k , then V1 would be 6V and V2 would be 

4V which we can evaluate by a glance without performing any calculation. The 

voltages will remain the same if the 6k and 4k resistors are replaced by 300 and 

200 resistors respectively. Here the current will increase, but that is not of much 

concern when we are interested only in voltages (of course, we do not want to waste 

power, so would not like the current to be unnecessarily high). 

2.14 Current Divider Network 

Fig. 2-28 shows a current divider network. Here 

the current I obtained from a constant current 

source is divided between two resistors. Since 

the voltages across R1 and R2 are the same 

always, therefore, 

I1R1 = I2R2 

so that,   
1

2

2

1

R

R

I

I
      ... 2.15 

Note that there is inverse dependency. The 

smaller resistor will take the larger amount of current. This was discussed before with 

parallel resistor combinations. In fig.2.28, if you are asked to find the voltage across R2 

you can calculate it either from I1R1 or I2R2. The same applies for the voltage across R1. 

Example 2.1: If I = 1A, R1 = 6 and R2 = 4 , then I1 = 0.4A and I2 = 0.6A, which we 

can evaluate by a glance without performing any calculation. What is the voltage 

across the resistors in this case? Find out yourselves. 

 

 

Fig.2-28: Current Divider 
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2.15 Thevenin’s equivalent circuit 

Equivalent circuits are needed to simplify and analyse complex circuits. Electronic 

devices like diodes and transistors which cannot be directly described in terms of any 

known electrical parameters like resistance, capacitance, inductance, etc. are not 

amenable to analysis unless we represent them in terms of the above parameters. 

Therefore we cannot do without equivalent circuits in electronics, and Thevenin’s 

equivalent circuit is possibly the most widely used 

circuit. This is based on Thevenin’s theorem whose 

statement is given below.  

Thevenin’s theorem states that any complex 

network can be replaced by a constant voltage 

source, VTh in series with a resistor, RTh as shown in 

Fig.2-29, where VTh is given by the open circuit 

voltage at the output and the RTh is given by the 

total resistance measured between the output 

terminals with all internal voltage sources replaced 

by shorts, and all internal current sources replaced 

by open circuits.  

(Remember, an ideal voltage source has zero internal resistance, and an ideal current 

source has infinite internal resistance.) 

We can see in Fig.2.29 that since there is no current through RTh under open circuit 

condition, the open circuit voltage VOC across ab is equal to VTh. Again looking back 

through terminal ab, the total resistance is RTh since VTh has zero internal resistance. 

This is just a model proposed by Thevenin and we have to represent a whole complex 

circuit in this way. There could have been other models, but this simple model has 

gained wide acceptance. We will discuss another model based soon on a current source 

instead of the voltage source  in the above model, which is also widely used. 

2.15.1 Determination of Thevenin’s equivalent circuit 

This basically means reducing any complex circuit to the arrangement shown in Fig.2-

29 and determining the values of the Thevenin parameters VTh and RTh. There are two 

common approaches – one for an unknown circuit, and the other for a known circuit.  

Unknown Circuit 

If the internal circuit details are not known, or if it is too complex to be analysed easily, 

we can determine the Thevenin parameters (VTh and RTh) through a knowledge of the 

open circuit output voltage VOC and short circuit output current ISC. These values may 

be measured directly as shown in Fig.2.30. We can measure the open circuit voltage 

VOC using a voltmeter with very high internal resistance as shown in Fig.2.30a and the 

short circuit current ISC using a current-meter (Ammeter) with very low internal 

resistance (a short) as shown in Fig.2.30b. With reference to Fig.2-29, VTh itself is the 

open circuit voltage VOC. Now RTh can be easily obtained from the ratio of VTh to ISC .  

 

Fig.2-29: Thevenin’s 

equivalent circuit 
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Thus we have,   VTh = VOC  ... 2.16 

and   RTh = VTh / ISC   ... 2.17 

which are determined from the measured values completely. Thus we obtain the values 

of VTh and RTh for this unknown circuit which completes the requirement to draw the 

corresponding Thevenin’s equivalent circuit as given in Fig.2-29. 

We frequently use the alternative form of Eq.2.17,  

   ISC = VTh / RTh  ... 2.18 

Known Simple Circuit 

If the circuit is reasonably simple and the internal circuit details are known, we usually 

perform network analysis directly to reduce the circuit. This method will be clarified 

using a few examples below. 

Example 2.1 (for a known simple circuit): Let us determine the Thevenin’s equivalent 

circuit for the simple voltage divider circuit shown in Fig.2-31a between its two output 

points shown as p and q.  

The Thevenin voltage (open circuit voltage between p and q) is, following Eq.2.13: 

21

2

RR

R
eVV OCTh


   ... 2.19 

Fig.2-31: Voltage Divider and its output resistance  
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To determine RTh, we short the internal voltage source e in Fig.2.31a following 

Thevenin’s theorem. This leads us to the parallel combination of R1 and R2 as shown in 

Fig.2.31b. According to Thevenin’s theorem this combination looking back from the 

terminals p and q is the required series resistance RTh which is given by, 

21

21

RR

RR
RTh


   ... 2.20 

Thus we obtain both VTh and RTh in terms of the circuit parameters e, R1 and R2 and 

Fig.2-29 is the required equivalent circuit. 

A slightly more complex network can be systematically simplified using Thevenin’s 

equivalent network as shown in the example below. 

Example 2.2 (for a known circuit, slightly more complex): Let us determine the 

Thevenin’s equivalent circuit for the circuit shown in  Fig.2-32a between its two output 

points r and s. Firstly we determine the Thevenin’s equivalent circuit for  the segment 

to the left of points p and q, which is exactly the same as the simple voltage divider 

given in Ex.2.1. This first simplified equivalent circuit is shown in Fig.2-32b and we 

can use the previous solutions to write down the following intermediate values directly. 

Thus,  

21

21

RR

R
eVTh


       ... 2.21 

and,  
21

211

RR

RR
RTh


   ... 2.22 

Now R
1

Th and R3 can be combined to get the series combination in the next equivalent 

circuit shown in Fig.2.32c as, 

R
1
3  = R

1
Th + R3   ... 2.23 

The circuit in Fig.2.32c is again a simple voltage divider and we can use the previous 

results, as before, to get values for the final equivalent circuit as given by Fig.2.29, 

Fig.2-32: A complex circuit and its sequential simplification 
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4

1

3

41

RR

R
VV ThTh


   ... 2.24 

and,  
4

1

3

4

1

3

RR

RR
RTh


   ... 2.25 

where the intermediate values are as given by equations 2.21 to 2.23.  

Example 2.3 (to determine the current through a resistor in a network): In the circuit 

of Fig.2.32a if it is asked to find the current through resistor R4, this needs a slight 

modification. Here we have to take R4 out of the circuit as shown in Fig. 2.33a and 

determine the Thevenin’s equivalent circuit between points r and s as shown in 

Fig.2.33b, without R4. Here V
1
Th and R

1
3 are the same as in Fig.2.32c and given by 

equations 2.21 and 2.23. Then we connect R4 as a load and determine the current 

through R4 straightway as, 

4

1

3

1

Th

4
RR

V
I


    ... 2.26 

Thus we can simplify complex circuits step by step to reach its final Thevenin’s 

equivalent circuit as given by Fig.2-29, and perform the required analysis.Next we will 

discuss another model as mentioned before. 

2.16 Norton’s equivalent circuit 

This is basically a complement to Thevenin’s equivalent circuit. Norton’s equivalent 

circuit uses a Constant Current Source as against a Constant Voltage Source in a 

Thevenin’s equivalent circuit.  

Norton’s theorem states that any complex network can be replaced by a constant 

current source, IN in parallel to a resistor, RN as shown in Fig.2-34a, where IN is given 

by the short circuit current at the output and RN by the total resistance measured 
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Fig.2-33: Determining current through a resistor 
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between the output terminals with all internal voltage sources replaced by shorts, and 

all internal current sources replaced by open circuits. 

(Remember, as before, an ideal voltage source has zero internal resistance, and an ideal 

current source has infinite internal resistance.) 

To determine a Norton’s equivalent circuit it may sometimes be easier to determine the 

Thevenin’s equivalent circuit first and then convert. Therefore we need to know the 

correspondence between the two equivalent circuits.  

Let the Norton’s equivalent circuit and the Thevenin’s equivalent circuit shown in 

Figs. 2.34a and 2.34b represent the same original circuit. Now, in Fig.2.34a, when the 

output is open all the current IN flows through resistor RN. Therefore, the open circuit 

output voltage is, 

VOC = IN RN 

This should equal the open circuit voltage in Fig.2.-34b which is VTh .  

Therefore,   IN RN = VTh    ... 2.27 

or,     
N

Th
N

R

V
I                  ... 2.28 

Again, when the output is shorted in Fig.2-34a, the whole of IN flows through this 

shorted path (no current goes through the resistor RN, having non-zero value). 

Therefore, IN is the short circuit current in Fig.2-34a. On the other hand in Fig.2-34b, 

the short circuit current is given by VTh / RTh (Eq.2.18). Therefore equating these two 

we get, 

   
Th

Th

N
R

V
I                  ... 2.29 

Comparing equations 2.28 and 2.29, we get, 

RTh = RN    ... 2.30 

which means that the equivalent resistances in both the circuits are the same. This also 

comes from the statements of both the equivalent circuits. 

Fig.2-34: 
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Thus we get the Thevenin parameters VTh and RTh in terms of the Norton’s parameters 

from equations 2.27 and 2.30 respectively while the Norton’s parameter IN and RN are 

obtained from the Thevenin parameters using equations 2.28 and 2.30 respectively.  

Example 2.4:  A Thevenin’s equivalent circuit has a VTh = 2V and RTh = 1k. What is 

the Norton’s equivalent circuit? 

Answer: From the above circuits and analyses,  

IN = VTh / RTh = 2V / 1k = 2 mA, 

and RN  = RTh = 1k 

... as simple as this! 

2.17 Superposition Principle: 

This is mostly required where more than one source (voltage or current) is present. 

Suppose you are to determine the voltage between two specific points in such a circuit. 

According to this principle, you break the solution into several parts, in each you 

obtain the voltage between the specified points considering only one source at a time 

while replacing each of the other voltage sources by a short circuit, and replacing 

each of the other current sources by an open circuit. After doing this for all the 

sources, you add up all the partial answers taking care of the signs (algebraic 

addition) to get the final result. You can 

determine the current through a branch 

instead of the voltage in the same 

manner. An example will clarify the 

principle. 

Example 2.5: We have to find out the 

current through R4 in the network shown 

in Fig. 2.35. Since there is more than one 

source, we shall use the superposition 

principle in three steps as follows. 

Step-i: 

To analyse the effect of e1 only, we redraw the circuit first as in Fig.2-36a, where e2 is 
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Fig.2-35: The circuit for analysis 
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replaced by a short and I is replaced by an open circuit. 

Next we draw the Thevenin’s equivalent circuit for the part to the left of R4, which is 

essentially a voltage divider, in Fig.2-36b (note that R3 has no contribution as one of its 

end is open).  

Now we can evaluate, 

VVV ieq 5
)100100(

100
10 




 , 

and, 



 50

)100100(

100100
ieqR  

Therefore,  

 mAA
V

I i 5005.0
)5050(

5
4 


  

Step-ii: 

Next we analyse the effect of e2 only and redraw the circuit first as in Fig.2-37a, where 

e1 is replaced by a short, and I is replaced by an open circuit. Here we redraw the 

circuit as in Fig.2-37b where the circuit to the left of R4 is essentially a voltage divider 

(note repositioning of R1 and R2; R3 has been taken out as it is of no use). Note that the 

sign of e2 is in opposite sense to that of e1 and we have already represented the polarity 

of e1 as positive (which we have chosen as our reference direction). Therefore, when 

we draw the Thevenin’s equivalent circuit in Fig.2-37c, we draw the symbol with our 

reference polarity but place a () sign for the voltage value. As before, we evaluate, 

VVV iieq 5.2
)100100(

100
5 




 ,   and 




 50

)100100(

100100
iieqR  

Fig.2-37: Step –ii: Solution for e2 
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Therefore,  mAA
V

I ii 25025.0
)5050(

5.2
4 




  

Again, note that we have shown the direction of current in Fig.2-37c according to our 

chosen reference. The negative result above signifies that the actual current is in the 

opposite direction. 

Step-iii: 

Next we analyse the effect of I only and redraw the circuit first as in Fig.2-38a, where 

both e1 and e2 are replaced by shorts. To determine the current through R4 we draw the 

equivalent circuit shown in Fig.2-38b which essentially is a current divider network. 

Here R12 is the parallel combination of R1 and R2. Since both of these resistors equal 

100 each, R12 should be exactly half of this, ie, 50 which we can determine even 

without calculation (check it for yourself through calculation). So the current of 0.2A 

from the source passes first through R3 and then branches out into two paths, through 

R12 and through R4. They then recombine together and reaches back the source.  Again 

since these two resistances are exactly equal, they will share half of the total current 

each (check it yourself using Eq.2.15). Therefore the current through R4 is, 

I4-iii = 0.2A / 2 = 100 mA 

Note that its direction is also the same as for I4-i and hence has a positive sign. 

Final step, Combining all the three currents: 

We shall now combine all the three part currents obtained above by adding these 

algebraically (ie, with appropriate signs). This gives, 

I4 = I4-i + I4-ii + I4-iii = (50  25 + 100) mA = 125 mA.  

Since this is positive, we can conclude that the resulting current direction is downwards 

in Fig.2-38, i.e., in the same direction as for I4-i and I4-iii and opposite to that for I4-ii. 

Thus we have solved a complex problem using Superposition Principle. Note that it has 

employed all  the  techniques  for a Voltage divider, a Current  divider and Thevenin’s  

 

Fig.2-38: Step –iii: Solution for I 
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equivalent circuit. We have not used Norton’s equivalent circuit, but we could have 

done that as well. (Try it yourself!) 

Alternative approach for I4-iii 

In obtaining the current I4-iii through R4 we could have taken another approach which 

we shall show now. In this approach we determine the voltage across R4 first from 

which we determine the current. To do this, we redraw the circuit as in Fig.2-38c 

where the parallel combination of R12 and R4 are combined to form the equivalent 

resistor, 





 25

)5050(

5050
iiieqR  

Now if V4 is the voltage across R4 then it is also the voltage across the parallel 

combination Req-iii. Since the whole of I (0.2A) passes through Req-iii we can determine 

the voltage across it as, 

V4 = I  Req-iii  = 0.2A  25   = 5V 

Therefore, the current through R4 would be that due to V4 and is, 

I4-iii = V4 / R4  = 5V /50  = .1A = 100mA 

Obviously the former current divider approach is simpler in this case where we only 

asked for the current through R4. However, the latter method shows how the output 

voltage needs to be calculated if you have two parallel resistors driven by a current 

source.  

2.18 Modeling devices with Single port 

How to handle devices like microphones, Loudspeakers, etc. in electrical circuit 

analysis? Obviously, we have to model these devices either using Thevenin’s or 

Norton’s equivalent circuits. A microphone has only one signal output port as shown in 

Fig.2-39a, (actually there are at least two wires which are needed to convey the signal 

Fig.2-39: A microphone as a single port Source system and its Thevenin equivalent circuit 
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potential, but it is essentially a single port carrying a single signal). Why is it called a 

port? Well, a port is an outlet or inlet to a country through which it interacts with the 

outside world. Similarly any electrical device may have one or more ports to interact 

with the outside world. If it only sends out signals through this port, we call it an 

Output Port. Similarly if it only receives signals through this port, as happens in a 

Loudspeaker, we call it an Input Port. The microphone is a source of signal therefore 

we can generalise such devices as Source Systems as shown in Fig.2-39b which has an 

output port only. Now this source system can be modeled in terms of a Thevenin 

equivalent circuit which has been shown in Fig.2-39c. At the output we have two 

readily measurable parameters, output voltage vout and output current iout. The voltage 

has been shown to be + ve with respect to common for algebraic reference though the 

symbol vout represents an ac which changes direction alternately. The reference 

direction of current is shown inwards for the same reason, i.e., for algebraic reference. 

This direction somewhat corresponds to Kirchoff’s current law discussed before where 

all positive currents are assumed to flow inwards towards a node. It is clear that the 

Thevenin voltage source has a driving voltage of vout while the output resistance ROUT 

is directly related as 

out

out

OUT
i

v
R     ... 2.31 

Therefore Fig.2-39c having the above relationship for its parameters represents any 

Source System completely. 

We can in the same way talk about a Load System such as a Loudspeaker shown in 

Fig.2-40a which has only an input port. It receives an input voltage vin from a source 

which is not shown here and an input current iin is driven into this load system. This 

load system can also be represented by a Thevenin’s equivalent circuit consisting of a 

voltage source vr and a series resistance which we call the input resistance RIN of the 

load system as shown in Fig.2-401b. Here vr is a voltage source within the load system, 

usually called a reverse voltage, which is different from, and may be independent of vin 

(the loud speaker may produce a very small voltage due to the movement of the 

Fig.2-40: A Loudspeaker as a single port load system and its Thevenin equivalent circuits 
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speaker coil in a magnetic field). Therefore current iin would be determined by the 

difference vin – vr as, 

IN

rin

in
R

vv
i


    ... 2.32a 

In most practical applications reverse voltage vr would be negligible compared to input 

voltage vin and we can simplify the load system as Fig.2-40c, without vr so that the 

above equation becomes, 

IN

in

in
R

v
i     ... 2.32b 

The load is simply represented by a resistor, called the input resistance of the load 

system, or the Load Resistance.  

Remember, we could have represented both the source and the load using the Norton’s 

equivalent circuit as well. 

For general situations with frequency dependent source and load, we shall use 

Impedance in place of Resistance for both the above cases. However, sometimes when 

we deal with a single frequency for which the impedance has a definite fixed value, we 

occasionally use the term resistance to simplify expressions, but you have to remember 

that this is not strictly correct. 

2.19 Maximum Current, Voltage and Power transfer 

In many occasions we have to use the electrical output of a source system to drive a 

load system as shown in Fig.2-41. Here we have modeled the output of the source 

system using a Thevenin’s network, i.e., a voltage source, vout with a series impedance 

ZOUT. We have represented the loading system by simply a load impedance ZL as 

discussed before. Here we have used the general Impedance term instead of Resistance 

used above. We have not shown any input voltage to the load here, rather we have 

Fig.2-41: Signal Transfer system 
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shown the load voltage vl which results because of the current il passing through ZL. 

Here the load current is given by, 

LOUT

out

l
ZZ

v
i


    ... 2.31 

and the voltage available to the load is given by, 

 
LOUT

L
outLll

ZZ

Z
vZiv


   ... 2.32 

Therefore the power available at the load system is given by, 

 2

LOUT

L

2

out

llL
ZZ

Zv
ivP


    ... 2.33 

The above three equations give us the resultant values obtained though such a linkage 

between two systems. Sometimes we are interested to find out the conditions of 

maximum voltage, current and power transfer from a source to a load and the above 

equations allow us to determine those conditions as given below. 

Maximum current transfer:  

From Eq.2.31, we can see that for a given ZOUT, the load current il will be maximum (= 

vout / ZOUT) if ZL is zero. For practical purposes we require that for maximum current 

transfer, 

ZL << ZOUT  ... 2.34  

Maximum voltage transfer:   

From Eq.2.32, we can see that for a given ZOUT, the load voltage vl will be maximum, 

and equal to vout if ZL is infinity. Again for a given ZL the load voltage vl will be 

maximum if ZOUT is zero. For practical purposes we require that for maximum voltage 

transfer,  

ZL >> ZOUT  ... 2.35 

Maximum power transfer:  

From Eq.2.33 the condition for maximum power transfer is not so clear as the previous 

two cases. Therefore we differentiate PL with respect to ZL and set it to zero to find the 

maximum condition. Doing this exercise gives us, 

 3

LOUT

LOUT

L

L

ZZ

ZZ

dZ

dP




 = 0 
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This leaves us with,    ZOUT   ZL  = 0,  

i.e.,   

ZOUT  =  ZL  ... 2.36 

as the required condition for maximum power transfer.  

At maximum power transfer how much of the power is transferred? We can easily see 

from Fig.2-41 that the power will be equally divided between the output impedance 

and the load impedance as they are equal and are in series. Therefore the maximum 

power transfer can only be 50% of the input power. If ZL is greater or lower than ZOUT, 

the power transferred will be less. 

This means then that a source circuit can transfer only 50% of its output signal power 

at the most to the next circuit. Note that in case of maximum current and voltage 

transfers, the power transfer will be much lower (analyse Eqs.2.31 and 2.32 and find 

out yourself). 

2.20 Two Port Network 

Previously we dealt with source or load systems having one port only. Frequently we 

encounter networks or circuits that have both an input port and an output port as shown 

in Fig.2-42. An amplifier is a good example of such a two port network. An amplifier 

has both an input and an output. A filter circuit, or, any signal processing circuit that 

takes something as an input and gives out something as an output is a two port device. 

Some devices may have more than two ports, i.e., they may have more than one input 

and more than one output. However, we will restrict our analysis to two-port devices 

here. The concept may easily be extended to such multi port devices. 

How do we model such a complex device? Well, very simple, we separate out the input 

and the output of the two port network and replace them using the single port 

representations as discussed before. Since we have two types of equivalent circuits – 

Thevenin’s and Norton’s, and we have two ports, so we can make four combinations of 

these, making four types of equivalent circuits. We can also make an analytical 

approach which is a very elegant one, and the combination will give us a deeper 

understanding. Let us start with the analytical one. 

 

Two-port 

network 
vin 

+ 

iin iout 

vout 

+ 

Fig.2-42: A generalised two-port network 
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2.19.1 Analytical presentation 

In Fig.2.42 we can see that there are four measurable parameters – input and output 

voltages, input and output currents. For brevity and ease of analysis we represent the 

subscripts to the symbols using numbers as, v1, v2, i1 and i2 respectively. Taking any 

two of these as the variables, we can form six pairs of equations (= 
4
C2) from which the 

other two parameters can be determined. In each equation-pair, the two variables are 

the chosen independent parameters while the other two are the dependent parameters. 

We are showing three of these equation-pairs below that are of interest to us from a 

practical viewpoint. These equation-pairs are, 

v1 = Z11 i1  + Z12 i2  ... 2.37a 

v2 = Z21  i1  + Z22 i2  ... 2.37b 

i1= Y11  v1  + Y12 v2  ... 2.38a 

i2 = Y21  v1  + Y22 v2  ... 2.38b 

v1 = h11  ii  + h12 v2  ... 2.39a 

i2 = h21  ii  + h22 v2  ... 2.39b 

If we analyse the dimensions of all the terms in these equations, we will understand 

why the letters representing the constant co-efficients have been chosen as shown. In 

the equation-pair 2.37, all the co-efficients have the dimension of impedance (= v/i), 

therefore we used the symbol Z. In the next pair Eq.2-38, all the co-efficients have the 

dimension of admittance (= i/v, inverse of impedance), therefore we used the symbol Y 

(=1/Z). In the next pair of equations, h11 is an impedance, h12 and h21 are plain numbers 

without dimensions, and h22 is an admittance, i.e., the co-efficients have mixed or 

‘hybrid’ dimensions, for which we used the first letter h.  

Now, can we make up any circuit from the above equations? Definitely yes. Fig.2-43 

gives a circuit implementation of both the equations 2.37a and 2.37b. How? First let us 

look at Eq.2.37a and to the left hand part of Fig.2-43. Here, Z11 i1 is the potential across 

Z11 because of the current i1. Next, Z12 i2 is the magnitude of the voltage source shown 

Fig.2-43: Circuit Implementation of Eq.2.37 
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in series (check the dimensions to satisfy yourself). Therefore the input voltage v1 

equals the sum of these two potential differences which satisfies Eq.2.37a. Similarly 

the right hand part of Fig.2-43 is just the representation of Eq.2.37b. Now if we look at 

Fig.2-43, we can see that each part is similar to a Thevenin’s equivalent circuit. 

Therefore we can say that the equation-pair 2.37 gives a representation where both the 

input and the output ports are implemented by a Thevenin’s equivalent circuit each.  

Significance of the parameters 

Let us copy Equations 2.37 a & b here for a closer look. 

v1 = Z11 i1  + Z12 i2  ... 2.37a 

v2 = Z21  i1  + Z22 i2  ... 2.37b 

What is Z11 ? From Eq.2.37a, we can see that if i2 is made 0, then Z11 = v1 /i1 which is 

the input impedance (= input voltage / input current). Now what condition does i2 = 0 

represent? It means that there is no output current, which is only possible if the output 

is an open circuit. From these two conditions we can say that  

Z11 = Input Impedance with output open. 

Similarly, Z12 = v1 /i2 for i1 = 0 from Eq.2.37a. Now what is the physical significance of 

v1 /i2 ? It is the ratio of input voltage and output current, i.e., it involves the effect of an 

output parameter to an input parameter. We name such effects as reverse transfer 

effects. Since the ratio has the dimensions of impedance, and the input current is zero, 

we would say that,  

Z12 = Reverse Transfer Impedance with input open. 

Without going into further explanation we shall put the names of the other two co-

efficients below. Try yourself to justify the names based on the above explanations. 

Just remember that any effect on output due to an input is a forward transfer effect. 

Z21 = Forward Transfer Impedance with output open. 

Z22 = Output Impedance with input open. 

Therefore we can now also say which of  the components in Fig.2-43 means what and 

how to measure them if need arises, and how the equations 2.37 a & b are represented 

by Thevenin’s equivalent circuits. 

 

Now, let us copy Equations 2.38 a & b here for a closer look. 

i1= Y11  v1  + Y12 v2  ... 2.38a 

i2 = Y21  v1  + Y22 v2  ... 2.38b 
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Here, Y11 = i1 /v1 with v2 = 0. Clearly i1 /v1 is the inverse of the input impedance, i.e., it 

is the input admittance. What condition does v2 = 0 represent? A zero output voltage is 

only possible if the output terminals are shorted together. Therefore we would say that, 

Y11 = Input Admittance with output shorted. 

Similarly we can name all the other three co-effcients as (justify yourself), 

Y22 = Reverse Transfer Admittance with input shorted. 

Y21 = Forward Transfer Admittance with output shorted. 

Y22 = Output Admittance with input shorted. 

We can see that Fig.2-44 is a good representation of equations 2.38 a & b and we can 

now also say which of the components in Fig.2-44 means what and how to measure 

them if need arises. We can also see that the circuit representations of equations 2.38a 

& b are nothing but Norton’s equivalent circuits. 

 

Now, let us copy Equations 2.39 a & b here for a closer look. 

v1 = h11  ii  + h12 v2  ... 2.39a 

i2 = h21  ii  + h22 v2  ... 2.39b 

Following the guidance provided by the above explanations we can name these co-

efficients directly as, 

h11 = Input Impedance with output shorted. 

h12 = Reverse Voltage Gain with input open. 

h21 = Forward Current  Gain with output shorted. 

h22 = Output Admittance with input open. 

Fig.2-44: Circuit Implementation of Eq.2.38 
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Note that v1 /v2  is a voltage gain term, without any dimensions, but is a reverse effect, 

from output to input. Similarly, i2 /i1 is a dimensionless forward current gain term, from 

input to output. These also formed the basis of the above nomenclatures. 

We can see that Fig.2-45 is a good representation of equations 2.39 a & b and we can 

now also say which of the components in Fig.2-45 means what and how to measure 

them if need arises. We can also see that the circuit representation of Eq.2.39a is a 

Thevenin’s equivalent circuit while that of Eq.2.39b is nothing but a Norton’s 

equivalent circuit. This also shows the significance of the name ‘hybrid’, which means 

‘mixture of various kinds’ as indicated before. 

In our dealings with transistors and other devices later, we will use the two-port 

networks and their simplified forms extensively for analysis. Therefore one needs to 

have a grasp of the basics of the above representations well. 

2.21 Signal and Noise 

Frequently we talk of these two terms but the difference is very subtle and the terms 

are purely subjective. At your examination time your roommate playing a song on a 

cassette player may irritate you. Here the song is a signal for your roommate because 

(s)he is interested in it. On the other hand the same song is a noise for you as you feel 

disturbed by it. Therefore any pattern of electrical voltage that is of interest to a subject 

is an electrical signal, while all unwanted electrical voltages will be termed as electrical 

noise. It may happen that at a different situation, the same subject may become 

interested in some of voltages considered as noise before (as you may get interested in 

the same songs after the examination is over). The names would therefore 

automatically change with the interest of the subject who is describing the event. 

 

 

 

Fig.2-45: Circuit Implementation of Eq.2.39 
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Chapter 3 

Capacitors, Inductors; dc transients  
 

3.1 Capacitors and Capacitance  

Any two conductors, placed in such a way that they do not touch each other, can store 

electrical charge if they are suitably connected to a source of emf. This arrangement is 

called a Capacitor, and this property of storing charges is described by the term 

Capacitance. The amount of charge, Q, that can be stored depend on the geometry and 

the nature of the arrangement, and also on the voltage, V, existing across the capacitor, 

and is given by, 

Q = CV   ... 3.1 

Here C is the term which is related to the geometry and the nature of the arrangement 

of the conductors, and is called the Capacitance in the technical sense. The unit for 

measurement of capacitance is a Farad, which equals a Coulomb per Volt, and is a 

very large quantity. Practical devices have capacitances of the order of microfarads, 

nanofarads, etc.  

For a simple parallel plate capacitor, capacitance is given by, 

d

A
C


    ... 3.2 

where A is the overlapping area between  the plates, d is the separation between them, 

and  relates to an electrical property, called the permittivity, of the insulating material 

(called a dielectric) in between the plates. The dielectric could be vacuum, air, paper, 

mica, plastic sheet or any other good insulating material.  

3.2 How does a capacitor work? 

3.2.1 Charging of a capacitor 

Suppose the capacitor shown in Fig.3-1 (a & b) has vacuum as the dielectric. When the 

switch is just closed (Fig.3-1a), the battery (electron pump, or, source) pushes electrons 

out of its negative terminal to plate J of the capacitor in the direction shown, as a result 

of which we get an excess accumulation of negative charges there. These excess 

electrons repel an equal number of electrons away from plate K (Coulomb effect) 

which are conducted through the connecting wire and are subsequently taken in by the 

battery at its positive terminal. (Inside the battery, the electrons are again pushed down 

to its negative terminal through an chemical energy transfer process.) Thus due to a 

lack of electrons, plate K is charged positively and a potential difference is created 

across the capacitor plates. An electron flow is also initiated in the conducting parts of 

the circuit which can be detected by a current sensor (shown as an ammeter, A) at this 

moment. This is a bit awkward; the capacitor appears as a break in the circuit, there 

should not have been a current flow at all! Well this will happen in the long run, but for 



DC Transients Chapter 3 

 44 

a brief period just after switching, we will experience a transient (short lasting) current 

in the conducting parts of the circuit due to charging of the capacitor. The current will 

be large at the moment of switching and will eventually die away to zero 

exponentially. The charge on the capacitor plates and the potential across them will 

also increase gradually in a corresponding manner (remember, q=CV). How the current 

dies away is explained below. 

For our thinking purposes, suppose we move electrons from the battery to plate J in 

packets. Just after switching on, suppose we have moved a packet of electrons to plate 

J. This will force a similar packet to move from plate K to the battery. Since plate J 

now has an excess number of negatively charged electrons, these charges try to oppose 

further incoming electron-packets from the negative terminal of the battery (Coulomb 

repulsion again). However, if the emf of the battery is larger than the potential 

difference across the capacitor plates, it will be able to overcome the opposition and 

push more electron packets to plate J of the capacitor, but their flow rate will be 

somewhat reduced than before because of the opposing forces. These new electron 

packets accumulating on the plate J will in turn repel an equal number of electrons 

away from plate K at the same rate thereby increasing the potential difference across 

the capacitor. In this way the electron flow will continue for some time but its rate will 

be progressively reduced. This happens in an exponentially decaying fashion until the 

potential difference between the capacitor plates becomes exactly equal to the emf of 

the source. At this point the source of emf can no longer overcome the opposing forces, 

and the electron flow becomes zero. We say that the capacitor has become fully 

charged. The amount of excess negative charge on plate J is exactly equal to the 

amount of excess positive charge on plate K. During this charging transient and in 

equilibrium, Eq.3.1 above is valid at each point in time. We just mentioned coulomb 

repulsion as a cause for the decaying current. However, the resistance of the 

conducting wires will also have a role in controlling the actual magnitude of the 

current.  

At this stable position, if we suddenly increase the emf of the source to a greater value, 

some more electrons will make their way to plate J, a transient current will flow again, 

and the amount of charge on the plates of the capacitor will increase to a value 

Fig.3-1: Charging (a) and discharging (b) a vacuum capacitor. 
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determined by the new emf, increasing the potential difference between the plates as 

well. Therefore we said earlier (Eq.3.1) that the quantity of charge stored on the 

capacitor is proportional to the voltage across it.  

In the above description we referred to an electron flow as this is the physical 

mechanism that takes place. However, we have to remember that conventional current 

has the opposite direction and so we can say that when the switch is flipped ‘on’, a 

clockwise transient current flows in the circuit of Fig.3-1a, which dies away 

exponentially.  

3.2.2 Discharging of a capacitor 

Now, if we suddenly remove the battery and replace it by a short as shown in Fig.3-1b, 

the capacitor would not be able to hold the excess charge that it has. Therefore the 

excess electrons from its plate J will flow through the conducting wires in a reverse 

direction to that before in order to neutralise the lack of electrons on plate K of the 

capacitor (shown by a reverse current in the ammeter). This current will also be large 

in the beginning but will die away to zero exponentially when there will be no excess 

charge left on the capacitor plates. We can say that the capacitor with the potential V 

across it acts similar to a battery and pushes the excess electrons from its negative plate 

J to the positive plate K for a while, but unlike a battery the potential decreases 

exponentially, reducing the current too. Eq.3.1 is also valid at any point of time during 

discharge. 

Instead of replacing the battery by a short, if we reduce the battery emf suddenly, the 

capacitor will discharge too since its potential becomes greater than the emf of the 

source; the transient will last till the two voltages become equal. 

In Fig.3-1b we get a current in the circuit even when there is no battery in the circuit. 

Where does the energy come from? In fact the capacitance stores energy during 

charging, which it releases while discharging. Therefore a capacitor is basically an 

energy storing device and this quality has been used to obtain different desired circuit 

functions in electronics about which we will study more in this book. 

3.2.3 Gradual change in applied potential 

We only talked about sudden changes above to make a phenomenological description 

simple. In fact any change in the applied voltage to the capacitor, whether sudden or 

gradual will cause charging or discharging of the capacitor as appropriate. In fact we 

can define a current through a capacitor as, 

dt

dv
C

dt

dq
i     ... 3.3 

where C is a constant for a particular capacitor. Note we have used small letters for the 

symbols as these are changing.  
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3.3 What is Capacitance? 

In the above description, the quantity of stored charge is also proportional to the 

capacitance of the capacitor. The larger the area of the capacitor plates, more charge 

can be stored. What is Capacitance then? By rearranging Eq.3.1 we can see that 

C = Q/V 

which says that  the capacitance is the quantity of charge stored per unit potential 

difference.  

This can be compared with the water storage capacity of a bucket, though the analogy 

may not be 100% compatible. For a cylindrical bucket the capacity can be stated as the 

mass of water it can hold per unit height (say, 100 kg/m) similar to the charge per unit 

potential difference (dimension: Coulombs/Volt) in an electrical capacitor. In the 

bucket the mass stored will be proportional to the height of water, similarly in a 

capacitor, the charge stored is proportional to the voltage. Again by increasing the 

capacity of the bucket by increasing the area of cross section, we can increase the mass 

stored for the same height. Similarly, in a capacitor, by increasing its capacitance by 

changing , A or d appropriately, we can increase the quantity of charge stored for the 

same voltage. 

3.4 Effect of , A or d 

Increasing area A allows more charge to be 

stored at the same voltage resulting in an 

increased capacitance, and is simple to 

understand. The increase in capacitance 

with a reduced separation d (in vacuum) 

may be thought of as due to an increased 

interaction of the excess charges on the two 

plates. Increased Coulomb force will cause 

more electrons to be repelled from the 

positive plate, and thus both the plates will 

have a greater number of excess charge. 

For any other insulating material except 

vacuum as the dielectric, the electric field between the plates of the capacitor will 

polarise the molecules of the dielectric through displacement of the centres of positive 

and negative charges as shown in Fig.3.2. This causes the opposite charges between the 

plates and the adjacent polarised molecules to come at close proximity to each other 

and thereby interact more (similar to that for a reduced d). This in turn allows the 

plates to hold a greater number of excess charges, resulting in an increased 

capacitance. The higher the polarisability of the dielectric (which is given by the 

permittivity ), higher is the number of polarised charges that come near the plates and 

higher is the capacitance. Another way of looking at it is that the charges of the 

dielectric molecules near the plates tend to neutralise the effect of some of the opposite 

Fig.3-2: Polarisation within a 

dielectric in a capacitor 



Chapter 3 DC Transients 

 47 

charges on the respective plates, which in turn tends to reduce the potential between 

the plates. If the potential is held constant by a battery, more excess charges need to be 

pushed into the plates, and the capacitance is increased.  

There are two types of dielectric - polar and non-polar. In a polar dielectric, individual 

molecules are normally polarised but are randomly oriented, so that there is no net 

polarisation. In the presence of an electric field these become oriented as in Fig.3-2, 

i.e., become polarised. On the other hand non-polar molecules are not normally 

polarised, i.e., the centres of positive and negative charges coincide. However, when an 

electric field is applied, they also become polarised, same as that for a polar dielectric 

as shown in Fig.3-2. 

3.5 Displacement current 

We can see that while a transient current flows in the outside circuit, there is no 

electron flow within the region between the plates. Only the electric field in this region 

changes during the time that the capacitor is getting charged. If there is a dielectric 

material inside, the amount of polarisation will change, thus changing the amount of 

displaced charges both on the plates and inside the dielectric. However, we would like 

to imagine a continuity of current in the whole circuit. We say that a displacement 

current flows within the capacitor (due to displacement of charges), which equals the 

conducting current elsewhere in the circuit. 

 

3.6 How a capacitor affects a dc circuit, dc transients 

The capacitor essentially looks like a break in a circuit. So there should not be any 

stable current through a capacitor with a dc source as mentioned before. However, at 

the moment of switching to a dc supply, transient currents flow as explained above. 

Transient currents also flow after the dc supply is switched off. The natures of these 

flow patterns when such step voltages are applied are of interest to us and are dealt 

with analytically in the following sections. 

3.6.1 Switching ON, charging of a capacitor 

Let us consider the circuit of Fig.3-3 with the change-over switch initially at position 2. 
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Fig.3-3: dc transients through a capacitor 
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The circuit is in a stable condition with the capacitor fully discharged, the voltage vC 

across it being zero. As soon as the switch is flipped from 2 to 1 (say, at time t = 0), a 

transient current i flows for a certain period as explained above, charging up capacitor 

C. The conventional current direction is shown in the figure. The current gradually 

decreases becoming zero at infinite time. 

Analysis 

To analyse the circuit we can use Kirchoff’s law for voltage around the loop to get, 

VIN = i R + q/C   ... 3.4a 

where q is the instantaneous charge on the capacitor, and the corresponding voltage 

across capacitor vC = q/C . We have used small letters for i and q as these are changing. 

Note that we have shown a common or ground terminal which has the reference 

voltage of 0V and all voltages are referred to this terminal. 

Differentiating Eq.3.4 and replacing dq/dt by i we get,      

C

i

dt

di
R0     ... 3.4b 

Reorganising, we get,  
RC

1

dt

di

i

1
  

Integrating with respect to time,   







dt

RC

1
dt

dt

di

i

1
 

Now,  L.H.S.  = ilndi
i

1
dt

dt

di

i

1









      (ignoring constants) 

Therefore,     K
RC

t
iln   

where K is a constant. Taking exponentials, we get, 

RC
t

K eei


   

where we have to find the unknown constant K from known conditions. If the initial 

current at time t = 0 is I0, then from the above equation, we get, 

e
K

 = I0 

Therefore we can write,  
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Ct
eIi

/
0


  ... 3.5 

where,  C = RC   ... 3.6 

is called the time-constant of the RC circuit.  

Checking the fundamental dimensions of R (= V/I) and C(= Q/V) you will find that the 

dimension of the product RC reduces to that of time as shown below, 

time
timeeargch

eargch

voltage

eargch

current

voltage
  

At time t = 0, there is no excess charge on the capacitor plates so the initial current sees 

no obstruction or resistance in the capacitor, the capacitor appears as a short circuit. 

The only resistance in the circuit is R that limits this current. So the initial current at 

time t = 0 is given by, 

I0  = VIN /R  ... 3.7 

The resulting temporal behaviour of the current is shown in Fig. 3-4 (white line, note 

scale on the left). 

To obtain the voltage across the capacitor, vC (= q/C), we rewrite Eq. 3.4 as,  

vC = VIN  i R.    

Now using Eq.3.5 and Eq.3.7, we get, 

C/tIN
INC eR

R

V
Vv


   

Fig.3-4: Current and Voltage transients during charging of a capacitor 
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or,  )e1(Vv C/t
INC


   ... 3.8 

This shows that the capacitor voltage, vC, increases asymptotically from an initial value 

of zero, reaching VIN at time t =  (infinity). The resulting temporal behaviour of the 

capacitor voltage is shown in Fig. 3-4 (black line, note scale on the right). 

3.6.2 Significance of time constant 

What is special about the time constant? To find it let us determine the values of the 

voltages and currents after a delay of one time constant.  

From Eq.3.5 and Eq.3.8, we get, when t = C, 

i = I0 / e  

and     vC = VIN (1 – 1/e). 

This signifies that after a time equal to the time constant, the current becomes 1/e th of 

the initial maximum value while the voltage becomes (1-1/e) th of the final maximum 

value (remember, e  2.718, so that these values are about 37% and 63% respectively). 

These points are also indicated in Fig.3-4. After a period of n time constants, you will 

find that the current has become 1/e
n
 th and the voltage has become (1 – 1/e

n
 ) th of the 

respective maximum values.  

Since e
5 
 148 and e

6 
 403 which are far greater than 1, we can say that after a period 

of about 5 or 6 time constants, both the current and the voltage may be considered to 

have reached almost the final long term values for practical purposes, though ideally it 

ought to take an infinite time. 

Therefore the time constant gives us an idea about the time it takes for the capacitor to 

charge and discharge to any specific percentage of the maximum value. Besides, time 

constants allow us to compare the temporal behaviours of different circuits. 

 

Example Question: Let VIN = 10V, R=1k and C=100F in the circuit of Fig.3-3. 

Let the capacitor be in a fully discharged condition initially with switch at position 

2. After switching to position 1, at approximately what time would the voltage 

across the capacitor be 6.3V? What would be the current at that instant?  

Answer: 6.3V is 63% of the maximum value (=10V), and this is attained after one 

time constant, which equals, RC = 1k x 1F = 100mSec. The current at that instant 

is about 37% of the maximum, which should be, i = 0.37 x 10V/1k = 3.7mA 

Note: For any other value of voltage or time or current, use Eq.3.5 to Eq.3.7 as 

appropriate, and solve. 
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3.6.3 Application: Timer 

One useful application of such an RC circuit is in producing a time delay circuit. 

Fig.3.5a shows the basic scheme of such a circuit. Here the capacitor voltage drives a 

voltage sensitive (VS) circuit. Suppose the output of this VS circuit is at 0V if its input 

is below a certain percentage of the input battery voltage (called a threshold level, VTh).  

If the input voltage crosses the threshold level the output of the VS circuit becomes  

high, say equal to the battery voltage. The basic working of the timer circuit is 

described below with the help of Fig.3-5 b & c which shows the time variations of the 

voltages at the input and output of the VS circuit respectively. 

Suppose at time t = 0 the RC circuit is switched to the dc source resulting in a step 

voltage on the left side of R. The voltage of the capacitor will rise asymptotically 

according to Eq.3.8 and as shown in Fig.3.5b. As long as the capacitor voltage is below 

the threshold level VTh, the output of the VS circuit is low, at 0V, as shown in Fig.3.5c. 

After a time T the capacitor voltage vC crosses VTh, and the output of the VS circuit 

suddenly goes high. This output can be used to drive any alarm circuit or to switch any 

other device according to requirement. Thus we have made a timer device which is 

actuated after a certain time interval of switching it to a dc supply. The threshold level 

may be set at any suitable level depending on the design of the VS circuit. The time 

delay may be changed using either R or C, though changing R is practically more 

convenient and cost effective. To use the circuit repetitively an arrangement to reset the 

device by discharging the capacitor needs to be made. Such practical circuits will be 

discussed later in the 2
nd

 volume of the book where it will be shown that such 

automatic switching can be performed using semiconductor devices like transistors and 

integrated circuits. Timings from nanoseconds to tens of seconds can be achieved in 

practice using appropriate choice of component values. 

Fig.3-5: Timer circuit basics (a) and the relevant waveforms (b & c) 
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3.6.4 Energy storage 

Note that during discharge in Fig.3-5, there is no battery in the circuit. What is the 

source of emf needed to drive a current, and where does the energy come from? Well, 

the previous charging process has left excess charges stored on the capacitor having a 

potent energy that can be calculated as follows.  

The rate of energy storage, or, the energy E stored per unit time (which is equal to power) 

is given by (= voltage  current), 

dt

dq

C

q

dt

dE
     ... 3.8a 

Now the total energy stored till time T starting from 0 (during which an excess charge Q is 

transferred starting from an initial excess charge of 0) is, 

dqq
C

1
dt

dt

dq
q

C

1
E

Q

0

T

0    

i.e.,        2
2

CV
2

1
QV

2

1

C

Q

2

1
E      ... 3.8b 

This energy is stored in the electric field that is created by the excess charges on the 

capacitor plates, which the capacitor can release on discharge.   

 

3.6.5 Switching OFF, discharging the capacitor 

Suppose initially the capacitor is in fully charged state with the switch at position 1. 

Let us see what happens when the switch is flipped to position 2 suddenly as shown in 

Fig.3-5. Here we can see that the electrons on the lower plate of the capacitor will flow 

through the closed circuit through R and will gradually neutralise the positive charges 

on the upper plate of the capacitor as mentioned before. This process is called 

discharging of capacitor. It is also apparent that there will be an initial current in the 

circuit, but it will be in the reverse direction to the charging current discussed 

previously. The capacitor initially has a potential difference exactly equal to that of the 

battery, i.e., VIN, with the polarity shown (upper plate at a higher potential than the lower 

one). So the capacitor now acts as the new source of emf and produces an initial 

current of the magnitude (= VIN /R, same as that obtained initially during charging) but in 

the opposite direction. The current gradually dies away as the capacitor gets 

discharged. Since we denoted the previous charging current as positive, we 

have to call this discharging current negative. 

 



Chapter 3 DC Transients 

 53 

Analysis 

Kirchoff’s law for voltage around the loop gives us, initial voltage being zero, 

0 = i R + q/C   ... 3.9a 

Differentiating Eq.3.8 and replacing i = dq/dt as before, 

C

i

dt

di
R 0    ... 3.9b 

This is exactly the same as equation as Eq.3.4b. Therefore the same solution can be 

applied except for the initial condition. In this case, the capacitor has an initial voltage 

of  VIN (minus sign to show reverse direction compared to that of the battery in the original 

loop.) as shown in Fig.3-5 and therefore the initial current will be – I0  ( =  VIN/R). The 

current will also be opposite to that during charging. Therefore we can write,  

C

t

0 eIi




   ... 3.10 

where C  is the time constant RC as before. To obtain the voltage across the capacitor, 

vC (= q/C), we rewrite Eq. 3.9a as,  

vC = – i R 

which becomes, using Eq.3.10, 

C

t

INC eVv




   ... 3.11  

The transients are shown in Fig.3-6 a & b. 

Note that for current i the polarity is reversed ( ve) but its magnitude is decreasing 

similar to that during charging from an initial magnitude of I0. Capacitor voltage vC has 

the same polarity as before, except that it is decreasing from a maximum initial value 

towards zero exponentially. (We did not draw these on the same graph as before to point out 

that the current goes negative from an initial zero value) 

 

3.6.6 Voltage across Resistor 

How would be the behaviour of the voltage across the resistor R ? Since this voltage 

equals the product i R where R is a constant in a particular circuit, its behaviour would 

be exactly the same as that for the current i in both the above cases for charge and 

discharge (Fig.3-4 & 3-6a). In these cases the initial values will be Io R and  Io R 

respectively. 
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3.6.7 Repetitive switching 

If we continue to flip the switch between positions 1 and 2 in Fig.3-3, we will get 

interesting patterns at the output, either across the capacitor or across the resistor. Such 

switching can be done electronically (using a signal generator) when we call it a square 

wave signal. This switching can be very fast (less than nanoseconds), or very slow. This 

arrangement is shown in Fig.3-7 where an electronic square wave generator drives an 

RC circuit and the output is taken once across the capacitor (a) and once across the 

resistor (b). Several graphs of these two types of outputs are shown in Figs. 3-8 and 3-9 

 

Fig.3-6a: Current transient during discharging of a capacitor 
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Fig.3-6b: Voltage transient during discharging of a capacitor 
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for varying relationships between the period T of the square wave and the RC time 

constant of the circuit. Such waveforms can be the basis of many wave-shaping 

circuits.   

3.6.8 Capacitor behaviour 

We have seen in the above discussions that whenever the voltage at the input goes 

suddenly from zero to some nonzero value, the capacitor in parallel to the output takes 

some time to reach that voltage; it does not change its voltage instantly. Similarly when 

Fig.3-7: Two forms of an RC circuit driven by a square wave generator 
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the voltage goes suddenly from a non-zero value to zero, the capacitor voltage does not 

follow the change instantly, it takes a while. Therefore, we can say that a capacitor is 

conservative, it tries to hold on to its previous value of voltage and does not allow it to 

change suddenly. This quality of the capacitor is used in many applications to 

introduce a delay in the circuit as we have seen in the timer example before, or to filter 

out high frequency signals, or to smooth out sharp variations in voltage. Here the 

capacitor usually appears in parallel to the output as in Fig.3-7a. 

On the other hand for a step voltage change at the input the capacitor initially allows all 

the current the circuit can pass, as if the capacitor was a short circuit. This quality may 

be used to pass sudden changes in current but to block slowly varying, or dc currents in 

a circuit. Here the capacitor usually appears in series to the output as in Fig.3.7b. 

Both the above behaviours of a capacitor will have important bearings in the case of ac 

voltages and currents. The working of a capacitor with ac is described in detail the next 

chapter. 

 

Box3.1: Practical Capacitor model 

A practical capacitor may have leakage 

resistance associated with it. Its model is 

shown in Fig. B.3-1 which is basically an 

ideal capacitor in parallel with its leakage 

resistance. In most cases this leakage 

resistance is very high and can be taken 

to be an open circuit, and therefore, 

ignored. One might also consider the 

inductance of the lead wires, which might become significant only at very high 

frequencies. These inductances may be modeled in series with the above assembly. 

 

Box 3.2:  Series and parallel capacitance, which one dominates? 

We discussed series and parallel resistance combination in section 2.8. For a 

capacitor it is the reverse, i.e., for a series combination of two capacitors C1 and 

C2 (Fig.B3.2.1) the equivalent capacitance Cser is, 

21

21

1

21

11

CC

CC

CC
Cser















    ... B3.2.1 

while for a parallel combination (Fig.B3.2.2), the equivalent capacitance Cpar is 

21 CCC par       ... B3.2.2 

If they have widely different values which one dominates? In series combination it 

is the smaller one since the plates of all the capacitors should hold equal amount 

Fig.B3-1: The 

equivalent 

model of a 

practical 

capacitor 
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of charge, and it is the smaller one which determines what is the maximum 

amount of charge that can be held under a certain situation. This obviously 

requires that the voltages across the two capacitors are unequal, being smaller for 

the larger capacitance (since q = CV). On the other hand for the parallel 

combination, the voltage across both the capacitors are equal, therefore the charge 

on each would be unequal. Here it is the larger one that will dominate since the 

total charge that can be held by both the capacitors determines the combined 

capacitance which is the algebraic sum of the two charge amounts.   

 

3.7 Mutual Inductance 

Fig.3-10 shows two conducting wires ab and cd placed very close together. The left 

wire is connected to a source ein of time varying emf while the right wire is left open 

for the time being. Due to a varying current il through the left wire, a varying electric 

field will be produced around it (shown by white lines with arrow). Now under the 

influence of this varying electric field, an emf er will be induced in the right wire 

(remember, from basic electromagnetic theory that if the current does not vary with time, the 

magnetic flux will not vary and no emf will be induced). If a load is connected across the 

right wire, it will be able to drive a current through the load because of the induced 

emf.  

Fig.3-11: Mutual induction 
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Now, if we wind the straight wires into coils as shown in Fig.3-11, the induction effect 

will increase manifold as each turn can affect all other turns of wire. If we have a 

magnetic core passing through both the coils, the induced emf will increase many times 

more. The magnitude of the induced emf in the right coil er will be proportional to the 

rate of change of current (dil /dt) in the left coil. This we can define analytically as, 

dt

di
e l

r    

or, introducing a proportionality constant M, we have, 

dt

di
Me l

r    ... 3.12 

Here a negative sign is conventionally introduced to indicate that the induced emf 

opposes the changing current direction.  

Again if we have a varying current driven through the right coil, an emf will be induced 

on the left coil that can be described using a similar expression as Eq.3.12, except that 

the subscripts for left and right will be interchanged. The constant M will remain the 

same if nothing else is changed in the two-coil arrangement. Because each coil affects 

the other this is a case of mutual induction. 

Here the constant M depends on the physical parameters of both the coils, their 

geometry and magnetic characteristics of materials in the neighbourhood or within the 

coils, which determine how much of the electric field of the left coil will affect the 

induced emf in the right coil, and vice-versa. Therefore this constant M is called the 

Mutual Inductance of the two-coil arrangement. Its unit is called Henry. From Eq.3.12 

it can be seen that Henry (or H in short) is equivalent to volt-sec per amp. 

3.8 Self Inductance, Inductor  

Suppose in Fig.3-10 we bring the right wire closer and closer to the left wire, till at the 

extreme situation they become the same as shown in Fig.3-12. Now the wire is in a 

magnetic field due to a current going through itself. Now if the driving current varies 

an induced emf will be generated within the wire itself. In this case also if we wind the 

straight wire into a coil as shown in Fig.3-13a, the induction effect will increase 

manifold as each turn can affect all other turns of wire. If we have a magnetic core 

passing through the coil, the induced emf will increase many times more. This induced 

emf  el is different from the source ein that supplies the driving current, but it will 

appear in parallel with the input voltage as shown in the equivalent circuit in Fig.3-13b 

and it will always try to oppose the change in the driving current. The components Z1 

and Z2 represent the respective internal impedances of the source and the coil 

respectively. 
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We should realise that when current is increasing in the direction shown through the 

coil in Fig.3-13, the polarity of the induced emf will be positive at the upper terminal of 

the coil to oppose the increase. On the other hand when the current is decreasing, but 

still flowing in the same direction, the inductor will pump in extra current in the same 

direction as the input current in order to keep it from falling, so the polarity of the 

induced emf will be reversed. 

Where does the inductor get energy to pump in this extra current? In fact when the 

current is increasing, the inductor, by opposing it, stores some energy in its magnetic 

field. This stored energy is released later, during the fall of input current. Just as a 

capacitor stores energy in its electric field, similarly an inductor stores energy in its 

magnetic field. 

The induced emf, el, in this case is proportional to the rate of change of current (di /dt) 

that flows through the wire (or the coil) itself and is given by, 

dt

di
el    

where the minus sign indicates the opposition discussed above. 

Introducing a proportionality constant L, we have, 

dt

di
Lel    ... 3.13 

Here the constant L depends on the physical parameters of the coil, its geometry, and 

magnetic characteristics of materials in the neighbourhood or within itself, which will 

determine the magnitude of the induced emf. Since this is a case of self induction, this 

constant L is called the Self Inductance of the coil or of the straight wire, as the case 

may be. From the above discussion, it is clear that even a single straight piece of wire 

will have a self inductance, but obviously its magnitude is very small. Usually we use 

coils where self inductance is needed, with or without a magnetic core depending on 

requirements. In a coil, magnetic field produced by each turn is coupled not only to 

Fig.3-13: Self induction in a coil of wire (a) and 

its equivalent circuit (b) 

eo 

ein el 

Z1 Z2 eo 

ein 
a b 

i 
i 

Fig.3-12: Self induction 

in a straight wire 

eo 

ein 

i 



DC Transients Chapter 3 

 60 

itself, but to many other adjacent coils thus increasing the inductance many times. 

Such a coil is known as an Inductor. The unit of self inductance is also Henry as for 

mutual inductance. 

From the above discussion it is also clear that when the input current is increasing, the 

induced emf will have a polarity to oppose the input. For this reason the induced emf of 

an inductor is sometimes called a back-emf. However, when the input current is 

decreasing, the induced emf  has the same polarity as the input emf.  Therefore the term 

back-emf  is not always valid.  

3.9 Lenz’s law and Conservation of energy 

In the above discussion we have seen that the induced emf tries to oppose the change in  

the input current. This is stated through ‘Lenz’s Law’ which states that, ‘The induced 

current will appear in such a direction that it opposes the change that produced it’. 

The essence of this law can also be applied to the case of the capacitor circuit described 

before. When the initial electrons flow from the negative terminal of the battery to 

become excess stored charges on the lower plate of the capacitor (Fig.3.1), these excess 

electrons oppose further transfer of electrons from the battery, opposing the very cause 

which produced them. Had it been the other way round, i.e., if the storage of excess 

electrons on the lower capacitor plate aided further transfer, then the current would 

continuously grow to infinity producing energy from nowhere, which is an 

impossibility, and would violate conservation of energy principles. Thus we can 

generalise Lenz’s law to all activities in nature. “A product of a change opposes the 

very cause that produced it”. 

3.10 LR circuit, dc transients 

Fig.3-14 shows an LR circuit where the output voltage is taken across the inductor. Let 

us consider the circuit with the switch initially at position 2. The circuit is in a stable 

condition with no current in the circuit. As soon as the switch is flipped to 1 (say, at 

time t = 0), the current does not become equal to the final value instantaneously, rather 

it grows gradually over a certain period as explained above, because of the opposition 

provided by the inductor, storing magnetic energy in the process.  

Fig.3-14: dc transients through an inductor 
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Analysis 

To analyse the circuit we can use Kirchoff’s law for voltage around the loop to get 

(voltage across inductor =  L di/dt, with the appropriate sign), 

VIN = iR + L di/dt  ... 3.14a 

Reorganising, we can write, 

  )(
1

i
R

V

L

R
iRV

Ldt

di IN

IN   ... 3.14b 

We need a trick, called a change of variable, to integrate this equation. Let us define a 

new variable,   

)( i
R

V
z IN     ... 3.15 

then  
dt

di

dt

dz
 ,   and Eq.3-14b becomes 

z
L

R

dt

dz
 ,  or,  

L

R

dt

dz

z


1
 

Integrating with respect to time,  

 







dt

L

R
dt

dt

dz

z

1
 

Now,  LHS = zdz
z

ln
1

  (ignoring constants),   

Therefore we have,  

K
L

R
tz ln ,  where K is a constant. 

Taking exponentials, we get,  
L

tR
K

eez



 

Replacing z in Eq.3.15,   L
tR

KIN ee
R

V
i



  

Now, we will find the constants using known conditions. At time t = 0, the current i is 

zero (as the inductor does not allow the current to change). Therefore,   

R

V
e INK   
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Again, at t =  (infinity), there is no obstruction or resistance from the inductor so the 

final current Io sees only the resistor R in the circuit as, 

R

V
I IN

0    ... 3.16 

Therefore we can write,  

)1(
/

0
Lt

eIi


    ... 3.17 

where,  L = L / R    ... 3.18 

is called the time-constant of the LR circuit. 

 

The resulting temporal behaviour of the inductor current is shown in Fig. 3-15 (white 

line) which shows that the current increases asymptotically from zero to the maximum 

value with a time constant L.   

The voltage across the inductor, vL, is obtained from Eqs. 3.13 and 3.17 as,  

L/t

L

o
L e

IL

dt

di
Lv






  

Evaluating the constant term using Eq.3.16 and Eq.3.18, 

Lt

INL eVv
/

     ... 3.19 

Fig.3-15: Current and Voltage transients in an inductor while switching on 
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This shows that the inductor voltage, vL, decreases exponentially from an initial value 

of VIN, reaching zero at time t =  (infinity). The resulting temporal behaviour of the 

inductor voltage is shown in Fig. 3-15(black line).  

Let us now consider the circuit when the switch is flipped back to point 2 from position 

1 long after the transients have subsided. A similar analysis will show (do it yourself!) 

that  

L/t
0 eIi


     ... 3.20 

and 

L/t
INL eVv


   ... 3.21 

The time responses of these quantities are shown in Fig.3.16 a & b.  

The above equations show that an exponentially decreasing current is maintained for 

some time even though there is no battery in the circuit. Where does the energy come 

from? It is the magnetic energy stored in the inductor that supplies this current. It can 

also be seen that the direction of voltage across the inductor is now reversed as di/dt 

has the opposite sign. 

In all the above treatment we have considered an ideal Inductor having zero resistance. 

In practice this is not possible since any coil of wire will have some resistance. 

However, in most cases this resistance may be ignored compared to the series 

resistances involved in the circuit. If it is not the case we can model the inductor as an 

ideal inductor with the coil resistance in series. While evaluating the voltage across the 

inductor, we have to add the contribution of the voltage dropped across its coil 

resistance, which makes it somewhat complex, but it can be solved. 

  

3.10.1 Voltage across resistor 

The voltage across resistor in the circuit of Fig.3.14 is simply iR whose behaviour is the 

same as that for i since R is a constant for a particular circuit.  

 

3.10.2 Repetitive switching 

If we carry on repetitive switching in between points 1 and 2 in Fig.3-14, we shall get 

waveforms similar to those shown in Fig.3.8 and Fig.3.9 for the RC circuit, but for 

appropriate situations and for appropriate points in this circuit. (We will leave it to you to 

figure these out yourself.) 
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3.10.3 Energy stored by an Inductor 

We have seen above that a current exists even after the battery is switched off. Where 

does the energy come from? In a similar way to the capacitor, the Inductor also stores 

energy, which it can release on demand. The energy stored per unit time, or, the power 

is given by (= voltage  current), 

i
dt

di
L

dt

dE
   ... 3.22a 

and at any final current I, starting from an initial zero current, the total energy 

transferred is given by, 

Fig.3-16b: Voltage transient during switching over of an inductor to ground 
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2IL
2

1
E    ... 3.22b 

For the capacitor it was easier to visualise energy storage in terms of charges stored on 

plates. In the case of an inductor it is a bit difficult to visualise energy storage. Here it 

can be imagined that the energy is stored in the magnetic field created around the 

inductor, similar to the electric field created between the plates of a capacitor. Just as a 

dielectric increased the capacitance in the previous case, similarly the introduction of a 

magnetic material within the inductor coil increases the inductance manifold. For a 

capacitor we had polarisation of atoms and molecules in the dielectric, here for the 

inductor we have magnetisation of atoms and molecules in the magnetic material, and 

orientation of magnetic domains if the material is ferromagnetic.  

 

3.10.4 Application: Voltage and Current smoothing in Power Supply units 

It can be seen that the transient current and voltage in an LR circuit have the same 

behaviour as the transient voltage and current respectively in an RC circuit (note the 

sequencing of the terms voltage and current). In the RC circuit the capacitor voltage did 

not want to change, while in the LR circuit, the inductor current does not want to 

change. Therefore capacitors can be used to smooth out voltages in a circuit while 

inductors can be used to smooth out currents. 

Laboratory dc power supply units usually obtain their power from ac mains through 

stepping down the voltage using a transformer first, and then, rectification. This gives a 

varying dc voltage which needs smoothing circuitry. A combination of both inductor 

and capacitor gives the best of both worlds and a typical power supply unit with such a 

smoothing circuit is shown in Fig.3.17. Note that the two capacitors with the inductor 

in the middle make a graphical form which looks like the Greek letter ‘’. Therefore 

such a smoothing circuit is called a ‘-filter’. Such power supplies were used with 

older vacuum diode operated power supplies extensively. Inductors operating at the 

mains line frequency of 50Hz tend to be bulky and expensive, therefore, with the 

220V ac 
low
V 
ac 

low
V 
dc 

dc 
load 

rectifier 

varying dc smooth dc 

Fig.3-17: A low voltage dc power supply employing LC smoothing circuit 
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advent of small and cheap semiconductor devices, an alternative method of electronic 

voltage stabilisation became popular which gives a very smooth dc without inductors. 

However, inductors have recently made a come back again because of the popularity of 

highly efficient switch mode power supplies which operate at tens or hundreds of 

kilohertz by generating square waves of such frequencies within the power supply unit. 

Some of these supplies will be discussed in later volumes of this book. 

3.11  Series LCR circuit, Switching to a dc supply 

An LCR circuit connected to a dc voltage source is shown in Fig.3-18. When the 

switch is flipped from point 2 to point 1 a step voltage vIN is applied to the LCR circuit 

as shown in Fig.3-19a and consequently a transient current i is initiated. We may 

remember that on the application of a step voltage a capacitor allows a sudden high 

current which then decreases exponentially with time, but an inductor has an opposite 

behaviour. It does not allow the current to change sharply. So depending on the relative 

values of L and C, we expect to get a combination of the two effects which are shown 

in the lower curves of Fig.3-19 and are discussed below. 

3.11.1 Physical visualisation 

To visualise the effects let us first imagine the inductor to have zero inductance. So the 

circuit is essentially a CR circuit and the current would be as shown in Fig.3-19b, 

rising suddenly at first, and then decreasing exponentially.  

Now as we increase the value 

of L it opposes the sudden rise 

in capacitor current due to 

which we will see a gradual 

rise in current initially as 

shown in Fig.3-19c. After a 

while, the inductor’s effect 

will become negligible and the 

current will be dominated by 

the capacitor charging current 

which is decreasing 

exponentially in this phase as 

was indicated by Fig.3-19b. 

Here, the inductor would again 

oppose this fall in current modifying the exponentially falling pattern. Since the rate of 

change of current is low in this phase, which is again falling with time, the opposition 

of the induced emf will be low. Therefore, the capacitor behaviour will ultimately 

dominate the decreasing current pattern and it will eventually reduce to zero when the 

capacitor will be fully charged. The combined effect would result in an overall current 

pattern similar to that shown in Fig.3-19c, a rounded pulse with an almost 

exponentially trailing end.  

Fig.3-18: dc transients through a series LCR circuit 
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If we increase the value of L further beyond a 

threshold, the induced emf during the fall of the 

current will no more be insignificant (which 

works in the same direction as the driving current 

now, trying not to let the current drop). This will 

contribute significantly to the charging of the 

capacitor, hastening the process, and the 

resulting current pattern will be almost that of a 

half sinusoid as shown in Fig.3-19d between 

points p and q. When the current reaches zero at 

point q, the capacitor would be charged to a 

maximum (top plate +ve), to a voltage VC1  

(Fig.3-19e) which is higher than VIN. Where 

does the extra voltage come from? In the falling 

phase of the current the induced emf and VIN are 

both in the same direction, and therefore, they 

will add up to make the total voltage higher than 

VIN.  

After the current becomes zero at q, the 

capacitor will start discharging in the opposite 

direction because of the positive voltage 

difference VC1 – VIN and a similar situation as 

above will be created except that the current 

now would be in the reverse direction (anti-

clockwise in Fig.3-18). This will again result in a 

rounded half sinusoidal current pattern in the 

reverse direction as shown between points q and r in Fig.3-19d. During this process 

when vC – VIN becomes zero the current should have stopped, but the stored energy 

from the inductor carries the current further discharging the capacitor to a voltage 

value lower than VIN, being the lowest, VC2 at r (Fig.3-19d,e). The positive voltage 

difference VIN –VC2 will start to charge the capacitor, creating a current in  the 

clockwise direction again, and this will carry on repeating. We will get a damped 

sinusoidal alternating current (amplitude decreasing gradually, exponentially in this case) 

resulting from the sequential reversible energy storage and release by the inductor and 

the capacitor (also see Physics, Vol-II, by Halliday & Resnick). Note the relative phases of 

the current and the capacitor voltage waveforms, the latter being delayed by 90
o
.   

The damping occurs because of irreversible energy dissipated by the series resistor 

whenever a current is flowing (= i
2
R, always positive irrespective of the direction of the 

current) which progressively reduces the energy stored by the inductor and the 

capacitor. Had there been no resistance in the circuit (ideal case), there would not have 

been any damping and the current would be purely sinusoidal in nature with a constant 

amplitude up to infinite time.  

Fig.3-19: dc transients in  

an LCR circuit  
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It would be interesting to know what the voltage patterns are across each of the LCR 

components in the circuit. Here we only discuss them for the case corresponding to that 

for Fig.3-19d where we get damped sinusoidal oscillations (try to find out those 

corresponding to the other situations yourself). The voltage vR (= iR) across the resistor will 

have exactly the same pattern as for the current. The behaviour of the voltage vC across 

the capacitor is shown in Fig.3-19e. Rising from zero this will eventually have a 

damped sinusoidal pattern but it will have a bias of VIN and it will be delayed with 

respect to the current by a phase angle of 90
0
. The maximum voltage on the capacitor 

will occur when the current becomes zero and vice versa. Eventually at infinite time 

the capacitor will be charged to its stable value of VIN, its final destiny. The voltage vL 

across the inductor is shown in Fig.3-19f. Initially this poses an infinite obstacle and 

drops all of the input voltage VIN at t = 0. Therefore it follows the step input at this 

point. Then it follows a pattern completely 180
0
 opposite in phase to that of the 

capacitor voltage except for the dc bias, which 

is zero in this case. After an infinite time no 

voltage is dropped across the inductor. 

The above two oscillatory patterns are shown 

again with the scales suitably changed in 

Fig.3-20a and Fig.3-20b to visualise the 

patterns over a longer period. This behaviour 

is called ringing because it is similar to hitting 

a bell, where the bell produces an 

exponentially decaying ringing sound at its 

natural frequency of vibration. Therefore we 

can say that an LCR circuit has a natural 

frequency of oscillation, and it can be set into 

ringing by driving with a step voltage. Note 

that if we had an ideal situation with R = 0 in 

the circuit, there would be no power 

dissipation and the oscillation would go on 

indefinitely without any damping. However, 

this is not possible in practice since there will 

be some resistance in the inductor and in the 

wiring of the circuit. 

3.11.2 Analysis 

To analyse we have to apply Kirchoff’s law as before around the loop to get, 

iR
C

q

dt

di
LVIN       ... 3.23 

Differentiating, and taking current i =dq/dt , we get a 2
nd

 order differential equation,  

Fig.3-20: Damped oscillatory 

behaviour of an LCR circuit:  

a) current  and b) voltage across 

capacitor 
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0
1

2

2

 i
Cdt

di
R

dt

id
L   ... 3.24 

The solution to this equation is a bit complex since it depends on the relative values of 

L, C and R. Therefore we follow an alternative method of trial solution based on some 

mathematical pre-judgment and solve it only under certain conditions. Let a trial 

solution be,  

bteDi     ... 3.25 

where b is a constant. D may be a constant or a function of t.  

From Eq.3.25,  
btebD

dt

di   and 
btebD

dt

id  2

2

2

 

Replacing these values in Eq.3.24 we get,  0
12 

LC
b

L

R
b   

(since, D and e
bt

 cannot be zero at all values of t). 

The above is a quadratic equation in b, and we have as its solution, 

LCL

R

L

R
b

1

22

2









   ... 3.26 

Let the above equation be represented as, b = p   q where 

L

R
p

2
  and  

LCL

R
q

1

2

2









  ... 3.27 

The general solution for the current is then given by, 

tqptqp eBeAi )()(   ,  

where A and B may be constants or functions of t. The solution can be rewritten as, 

 tqtqtp eBeAei     ... 3.28 

We will now try to solve it under different conditions. 

Case I: Overdamped condition,    

for 
LCL

R 1

2
    ... 3.29 

both p and q are positive in Eq.3.27 and the above solution (Eq.3-28) applies which has 

both rising and falling functions of t giving rise to a rounded pulse with a long trailing 

end similar to that shown in Fig.3.19c. The time taken for the rise and fall of the 
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current, both are very large in this case. This situation is called overdamped , meaning 

the damping to the transients due to resistive losses (i
2
R) are very high because of 

which the above timing behaviours are observed. The transient takes a long time to 

stabilise in this overdamped condition.  

Case II:  Critically damped condition,    

for 
LCL

R 1

2
     ... 3.30 

q in Eq.3.27 is zero and we are left with only one value of b in Eq.3.26 and only one 

time dependent term in the solution in Eq.3.28 [i.e.,  i = (A + B) e
 pt 

] which is not 

mathematically acceptable for such a 2
nd

 order differential equation. Therefore in such 

cases one of the parameters is considered to be a linear function of t (see any advanced 

mathematics book). The solution is then given by  

  tpetBAi    ... 3.31 

We can see that this has a linearly rising component (A + B t) and an exponentially 

decaying component (e
 pt

 ) which compete with each other to give a rounded and 

trailing pulse, somewhat similar to the one shown in Fig.3.19c. However, the important 

distinction between this and the previous overdamped case is that, in the critically 

damped case the current rises and then decays back to zero in the shortest possible 

time, while for the overdamped case, the time needed is more.  

Case III:  Underdamped condition,    

for  
LCL

R 1

2
     ... 3.32 

we have, p  0  and q  is imaginary. The solution of Eq.3.28 becomes (with j = -1), 

tj
t

tj
t

eeBeeAi  





   ... 3.33 

where, 
R

L2
   ... 3.34 

and, 
2

2

1










L

R

LC
   ... 3.35 

If A = B  in Eq.3.33, the solution becomes,  

tCos)eA2(i
t

 


  ... 3.36 

This solution (Eq.3.36) can be divided into two parts, the one within the brackets, and 

the Cost term. The latter term shows that there will be a sinusoidal oscillation with 
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angular frequency , but the amplitude, given by the term within the bracket, is not 

constant, rather it decays exponentially with a time constant given by Eq.3.34. This 

decaying pattern is shown in dotted lines in Fig.3-20, which forms the envelope of the 

amplitude of oscillatory waveform given by the Cost term in Eq.3.36. Eventually the 

oscillation dies away and we get zero current at infinite time (for practical purposes we 

can take the current to be essentially zero after 5 or 6 time constants). Thus Eq.3.36 

clearly describes the ringing pattern of Fig.3-19d and Fig.3-20a that we inferred earlier 

using physical arguments. This situation where we get an oscillation is called an 

underdamped case. The damping depends on the time constant, 2L/R, with larger R 

making a shorter time constant, i.e., a quicker decay.  

The frequency of oscillation is given by, using Eq.3.35, 

2

2

1

2

1










L

R

LC
f


  ... 3.37 

which is dependent on all the three parameters.  

Case IV: Undamped condition,  

LCL

R 1

2
     ... 3.38 

     (R = 0 in ideal case) 

We have, p = 0  so that  e
  pt

 = 1, and q is imaginary. The solution becomes,  

 tjtj eBeAi     ... 3.39 

or,  i = (A + B) Cos  t + j ( A B) Sin  t  ... 3.40 

where  
LC

1
   ... 3.41 

Taking the real part in Eq.3.40 and replacing (A + B) by E, we get,   

i = E Cos  t  ... 3.42 

which is a continuous sinusoidal function with constant amplitude and angular 

frequence . This is a totally undamped case (ideal) and agrees with what we had 

described earlier from conceptual arguments. The frequency of oscillation, from 

Eq.3.41, will be,  

LC
f

1

2

1


   ... 3.43 

which is independent of R, and decreases with increasing value of the product LC. 
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We can see that the frequency in the underdamped case (Eq.3.37) reduces to that of the 

undamped case given in Eq.3.43 for the extreme condition 
LCL

R 1

2
 . In practice, 

small values of R may be considered to contribute to a deviation from the ideal 

frequency given by Eq.3.37.  

3.11.3 Conditions in terms of time constants 

We can square and rearrange the condition for critical damping, Eq.3.30, as,  

R

L
RC 4    ... 3.44 

We can see that the left hand side is the time constant of the circuit without the inductor 

(RC circuit) while the right hand side is four times the time constant of the circuit 

without the capacitor (LR circuit). If we denote these time constants as c and L 

respectively, we can see that the above four cases of damping occur for: 

 Case I: Overdamped  c > 4L 

 Case II:  Critically damped c = 4L 

 Case III: Underdamped  c < 4L   ... 3.45 

 Case IV: Undamped  c << L 

These can help visualise the relative values of L, C and R in terms of the above time 

constants. 

3.11.3 Switching back to ground 

We have to appreciate that after switching from 2 to 1 in Fig.3-18 when the current 

becomes zero after a long time, the capacitor remains charged to a voltage VIN with the 

top plate positive. This is also shown in the first half of Fig.3-21c. Now if the switch is 

flipped from position 1 to 2 in Fig.3-18 (i.e., switched to ground), only the VIN term in 

Eq.3.23 would be zero, and the differentiated form would be the same as Eq.3.24. 

Therefore the behaviour of the current as shown in Fig.3-19 b-d and Fig.3-20a would 

remain the same for appropriate values of the circuit components, and all of the above 

considerations would apply, except for the direction of the initial current, which would 

be reversed (negative first). This is shown by the second pattern in Fig.3-21b on 

downward excursion of the input voltage. The capacitor voltage will go through a 

baseline shift as well, as shown in Fig.3.21c, from VIN to zero. After a long interval the 

current becomes zero again, and the capacitor now is fully discharged (vc = 0). 

Therefore, after a long interval,in either of the switching positions, the current is zero 

and the capacitor is either fully charged or fully discharged depending on the switching 

position, and the inductor has no stored energy. For one switch position (2 to 1), energy 

initially comes from the battery, while for the other (1 to 2), the charged capacitor 

supplies the initial energy. 
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3.11.4 Repetitive switching & 

Resonance  

If the switching between point 1 and 2 is 

repeated periodically at large enough 

intervals, we will see the ringing patterns 

shown in Fig.3-21 repeating. If the 

switching period is reduced gradually (you 

have to use an electronic switch based on 

transistors, manual switching will not do), 

we will see changing complex patterns 

which will depend on the point in time 

with respect to the damped oscillation 

when the ‘switch’ is made. A particular 

sample is shown in Fig.3-22 a&b. 

Eventually when the switching period is 

made exactly equal to the period of 

oscillation, we will see a continuous 

sinusoidal oscillation having a maximum 

amplitude as shown in Fig.3-22 c&d. This 

is known as Resonance, a very important 

and interesting natural phenomenon about 

which you must have studied before in 

mechanics. Any object with a natural 

frequency of oscillation will demonstrate 

the phenomenon of resonance when a 

periodic external force is applied having 

the same frequency. If the switching 

period is reduced further, there will be 

incomplete storing of charge in either the 

inductor or the capacitor. The waveform 

will be still be sinusoidal but will follow 

the period of the switching, and the 

amplitude will gradually decrease.  

We can see that even though we have square waveforms at the input, the current, and 

hence the output voltage taken across the resistor (= iR) is always sinusoidal at 

resonance. In this way we can convert the energy in a square waveform into a 

sinusoidal one and this has important applications in high frequency circuits, 

particularly in Radio transmitters. The resonance is also observed if the impressed 

(driving) waveform is a sinusoidal ac, and this we will study in the next chapter. 

Fig.3-21: Damped oscillatory 

behaviour of an LCR circuit on 

switching on and off;  

a) input, b) current  and c) voltage 

across capacitor 
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Fig.3-22: Variation of current waveform of an LCR circuit on repetitive switching 

frequency. Resonance occurs when switching period equals natural oscillation period (c&d). 
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Chapter 4: AC circuits  

In this chapter we shall discuss some important ac circuits that are frequently needed in 

the analysis of electronic circuits. First let us recapitulate some ac fundamentals. 

AC FUNDAMENTALS 

4.1 Sine waveforms and phase angles  

Mathematically, a sinusoidal alternating voltage (which we will call ac voltage from now 

on) with time period T and frequency f (= no. of full cycles per unit time = 1/T) can be 

expressed as  

v = V Sin  t    ... 4.1 

where V is the amplitude, and  is the angular frequency (= angle covered per unit time =  

2 /T = 2f ). A sinusoidal function can be generated from the linear projection of a 

radius vector rotating in a circle at a constant angular velocity as shown in Fig.4-1. A 

radius vector covers a full cycle covering an angle 2 in a time period T. This gives the 

above relationship between  and T. In general, if the radius vector covers angle  in 

time t, then  = / t. Note that  can also be termed as the angular velocity having the 

same unit. The unit is given in radians/sec and has the mathematical dimension of sec
-1 

since the angle is a dimensionless number. Note that frequency f has the same 

mathematical dimension of sec
-1 

and is measured in Hz (previously in cycles/sec). 

 Eq.4.1 is plotted in Fig.4-1a as a function of angle  ( =  t) where a full cycle repeats 

at an angular interval of 2. For this waveform, v = 0 at  = 0, which corresponds to 

time t = 0. The corresponding generating circle for this sinusoidal waveform is shown 

on the right hand side of the figure where the projection of the radius vector A0 on the 

vertical axis gives the value of v (here, vertical projection = 0 at  = 0). The radius vector 

can also be called a phasor and is taken to rotate counterclockwise for a positive 

angular displacement. At any other point in time, the phasor may have a non-zero 

projection on the vertical axis giving an instantaneous voltage value v; the angle 

subtended with the original starting position ( = 0) is called the phase angle of the 

projected voltage value.  

Since  is constant for a sinusoidal waveform, the nature of the waveform would 

remain the same if we plot it as a function of time t ( = /) as shown in Fig.4-1b. This 

is more advantageous as it allows us to visualise the progression of the waveform in 

time. Note that the angle of full cycle 2 in Fig.4-1a corresponds to the time period T in 

Fig.4-1b. 

Now let us consider the waveform given by 

v = V Cos  t   ... 4.2 

which we can also write as  

v = V Sin ( t +/2).  ... 4.3 
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The wave represented by Eq.4.3 is the same as that given by Eq.4.1 except that its 

phase is leading (i.e., it started before) by an angle of /2 which is equivalent to a time of 

Fig.4-1: Sine 
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relationship to 
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T/4. The graphical form and the corresponding generating circle is shown in Fig.4-1c 

where v = V (maximum +ve value) at t = 0 and the phasor A1 is at a phase angle of /2 

with respect to  = 0.   

It easy to conceive that phasor A1 is at an advanced position, i.e., it is leading A0 at time 

t = 0. However, looking at the time graph how do we know that it is leading? Fig.4-1b 

started with v = 0 at t = 0. Therefore we have to look at the timing of the new 

waveform to find when v = 0 occurs, nearest to t = 0.  In Fig.4-1c, by extending the 

graph to the left we can see that v = 0 occurs at time t = – T/4, i.e., before that in Fig.4-

1b, which answers our question. The waveform given by Eq.4.1 is also plotted in Fig.4-

1c in dotted lines to show the comparison. Try to appreciate that time increases towards 

the right in this diagram and the waveform that leads is positioned on the left side in 

this time graph. 

Now let us consider the expression 

v =   V Sin  t  ... 4.4 

which can be rewritten as  v = V Sin ( t + )  

representing an waveform which is leading that of Eq.4-1 by a phase angle of   and is 

shown in Fig.4-1d together with the phasor A2 at t = 0. However, this can also be 

rewritten as  

   v = V Sin ( t )  

representing an waveform which is lagging behind (i.e., starts later) that of Eq.4-1 by a 

phase angle of . This is special since the phasor is at equal angles from both directions 

with respect to the starting point.  

Note that v = 0 at t = 0 for this function also, but it does not have the same phase as 

that of Fig.4-1a which is clear from the position of the phasor A2. In the time graph we 

can see that although v is the same as that for Fig.4-1b, the incremental behaviour is not 

the same. At time  t = 0, v is increasing in Fig.4-1b while v is decreasing in Fig.4-1d. 

Next let us consider the expression 

v = V Sin ( t  /2)  ... 4.5 

which represents an waveform that is lagging behind that of Eq.4-1 by a phase angle of 

/2 (given by the – ve sign) and is shown in Fig.4-1e together with the phasor A3 at 

t=0. In the time graph we can see that this waveform assumes the value of zero at time 

T/4 later than that in Fig.4-1b.  

When we refer to a general sinusoidal waveform, it is usual to include an arbitrary 

phase angle  as represented graphically in Fig.4-1f and mathematically as 

v = V Sin ( t +  ).  ... 4.6 
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We usually refer to the phase angle as positive meaning that the waveform is leading 

the reference waveform of Fig.4-1b. The advancement through an angle  is shown in 

the corresponding generating circle and in a graph against angle  ( =  t) in Fig.4-1f. 

If the waveform lagged behind instead of leading, then the phase angle  would be 

negative.  

Note that if we are free to choose the starting time of a sinusoidal function, we like to 

keep it simple and choose the phase angle as zero.  However, if we have a prior 

decision about the time reference then we have to use the general expression given in 

Eq.4.6. Again, if we are dealing with a number of waveforms of the same frequency 

but having constant phase differences between them, then we can choose zero phase for 

only one of these. Once we have done it, the phase angles for the rest are automatically 

determined.   

4.2 Combining ac voltages, Phasor representation  

We have seen above that a radius 

vector, or, a phasor in the generating 

circle show the phase angle of a 

sinusoidal waveform clearly, while the 

length of the phasor represent the 

amplitude (maximum vertical projection). 

If we want to compare and analyse two 

or more sinusoidal waveforms of the 

same frequency differing in amplitude 

and phase only, but which maintain a 

constant phase relationship with each 

other, the phasor diagram makes a very 

useful analytical tool. Note the two conditions mentioned above in italics, you cannot 

compare and analyse phasors representing waveforms having different frequencies 

easily (as they will vary with time differently), nor those whose phase differences change 

with time.  

Using phasor diagrams it is possible to add two waveforms to get the resultant phasor. 

However, remember that you can add or subtract the same physical quantities only – 

you cannot add voltages with currents or with other parameters. Furthermore, you can 

add phasors representing different waveforms at a particular point in time only. 

Usually we do it at t = 0.  

So for simplified analysis of multiple waveforms using phasor representation, the 

waveforms should 

i) have the same frequency, 

ii) maintain a constant phase relationship with each other, 

iii) have the same parameters for addition, 

iv) this addition is to be done at a particular time,  say, at t = 0. 

V1 

V2 

VT 

 

/2 

Fig.4-2: Phasor method of 

combining ac voltages. 
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The following two waveforms,  

v1 = V1 Sin  t   ... 4.6 

and   v2 = V2 Sin ( t + /2)  ... 4.7 

can be represented in a phasor diagram as in Fig.4-2 where the individual phasors 

represent the respective amplitudes V1 and V2 in both magnitude and phase at t = 0. 

Now the voltage sum or the total,  

(v1+ v2) = VT Sin ( t +  ) ... 4.8 

is represented simply by the diagonal of the rectangle formed by V1 and V2, both in 

amplitude (VT ) and phase (). Thus we can easily determine these resulting parameters,  

 
2

2

2

1T VVV    ... 4.9 

and   
1

21tan
V

V   ... 4.10 

as the complete solution. Compare the above technique with the other possibilities – a 

graphical one where you have to add the two waveforms point to point in time and plot 

the resultant waveform – or a mathematical solution which, you can imagine, would 

not be simple. Therefore the above technique of adding phasors provides a simple 

method of adding sinusoidal waveforms. 

If the phase angle between the two voltage waveforms is different from /2 we would 

get a parallelogram instead of a rectangle, but still can use the same technique, i.e., the 

diagonal will represent the resultant. The above procedures are exactly the same as that 

for vectors that you have done in Mechanics. 

Remember that there is no absolute value for phase, it all depends on the choice of the 

starting time. When we compare two or more waveforms, we usually choose any 

suitable one as the reference and refer the phase difference of the other waveforms with 

respect to that single reference. 

4.3 Capacitors and Inductors  

4.3.1 Capacitor on ac, Capacitive 

reactance 

Fig.4-3 shows a circuit comprising of an 

ac source vin, a resistor R and a capacitor 

C in series. The loop current ic, and 

voltages vr and vc across the resistor and 

the capacitor respectively are also shown. 

The current ic is related to voltage vc as, 

vr 

vc vin ic 

Fig.4-3: Capacitor in an ac circuit 

R 

C 
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dt

dv
C

dt

dq
i c
c     ... 4.11 

where q is the instantaneous charge on  the capacitor. Integrating the above, ignoring 

constants of integration, we get, 

  dti
C

v cc

1
    ... 4.11a 

Now if we choose  ic = IC Sin   t   ... 4.12a  
(This is our choice, for convenience. The reason will be apparent later.) 

then   vc = 
C

1
 IC Cos t = VC Cos t  ... 4.12b 

where VC is the peak capacitor voltage and related to the peak current IC as, 

C

V
I C

C


1

     ... 4.13 

Eq.4.13 has the form of Ohm’s law if the denominator 1/ C on the right hand side is 

considered as a quantity equivalent to a resistance. This is the opposition to a current 

posed by the capacitor. We can also see that 

due to the presence of , this opposition is 

frequency dependent. An ideal resistor 

offers a Resistance to a current that is 

independent of frequency. To distinguish 

between these two, the frequency dependent 

opposition is called Reactance and is 

usually denoted by the symbol X. The 

reactance offered by a capacitor, or the 

capacitive reactance may be denoted by the 

symbol XC. Thus  

C
X C



1
   ...4.14a 

and  
C

C

C
X

V
I             ... 4.14b 

Clearly, XC decreases with increasing 

frequency. This also says that an ac current 

can pass through a capacitor and that the 

current increases with increasing frequency 

(remember dc current cannot pass through a 

IC 

VC 

 /2 

Fig.4-4: Phasor representation of 

currents and voltages in a capacitor-

resistor circuit 

a 

VIN 

VC 

VR 

 

b 
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capacitor in the stable state).  

We can rewrite Eq.4.12b as, 

vc =  VC Cos t = VC [ Sin(/2  t)]= VC Sin( t - /2) ... 4.15a 

This indicates that the capacitor voltage lags behind the capacitor current by a phase 

angle of /2 which is shown in the phasor diagram Fig.4-4a by drawing the current 

amplitude IC along the + ve X-axis and the voltage amplitude VC along the – ve Y-axis. 

This is a very significant result. It effectively says that the voltage across a capacitor 

goes slow compared to the current through it. Remember, for a dc transient we found 

that the voltage across the capacitor changes slowly while the current at the instant of 

switching changes sharply (see Chapter 3). There is similarity between these two 

behaviours.  

With dc (Chapter 3, Fig.3-3), at switching on, there is no charge on the capacitor, so 

there is no opposition to incoming electrons. As it gets charged, the electrons 

already accumulated on the negative plate oppose new incoming charges. The more 

the capacitor is charged, the more opposition it offers to current, and an infinite 

opposition occurs when the capacitor is fully charged. We can extend this concept 

to ac. At high frequency, the capacitor gets little time to get charged, therefore, it 

offers little opposition. At lower frequency the capacitor gets more time to get 

more charged, therefore it offers more opposition. 

In Fig.4-4a we have shown two different quantities (current and voltage) in the same 

diagram to indicate their phase differences only, but they cannot be added.  However, if 

we consider the voltage across the resistor vr (= ic R) and draw the phasor diagrams of 

the two voltage-amplitudes as in Fig.4-4b, then we can add the two to get the sum-total 

amplitude VIN, which should represent the input voltage vin here. Note that ic and vr have 

the same phase since R is a constant in the product ic R. Since we have considered vr to 

have a phase angle of zero, we plot it along the X-axis. The voltage across the capacitor 

vc is plotted along the –ve Y axis and the input voltage vin is the sum of these two and is 

given by the sum-total or the resultant phasor. The phase angle  of the input voltage 

has been shown with respect to the reference vr. 

Here lies the reason for choosing the phase of ic as zero in Eq.4.12a above. This 

choice has allowed us to take the voltage across the resistance vr to have a zero 

phase also, and to consider it as a reference. This is a choice we usually go for. 

Remember, resistance is a frequency independent parameter, therefore, there is 

some advantage in choosing the phase of the voltage across this as the reference. 

Voltage across a series capacitor would be delayed by /2 while that across a series 

inductor will be advanced by /2, as we will find out soon. 

From Fig.4-4b we can see that vin is delayed by a phase angle  with respect to vr. So 

the expression for the input voltage should include this phase angle as, 
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vin = VIN Sin ( t + )   ... 4.15b 

where the phase angle  is inherently negative in this case, as is evident from the figure. 

From the phasor diagram of Fig.4-4b we can see that the peak amplitude of the input 

voltage is given, in terms of the respective peak amplitudes of the other voltages, by, 

22

CRIN VVV     ... 4.16 

and the phase angle by, 

R

C

R

C

V

V

V

V 11 tantan  


     ... 4.17 

The negative sign appears since VC is along the  ve Y- axis (phase =  /2). This 

essentially says that vin is lagging behind vr in phase. 

We can focus on some important results from the above discussion. If a capacitor and 

a resistor are in a single ac current loop (no other currents are involved) then the 

voltage across the capacitor will be lagging behind the voltage across the resistor by 

/2. This is the same as saying that the voltage across the resistor leads the voltage 

across the capacitor by /2. The sum of these two voltages will have a magnitude 

given by Eq.4.16 and will have a phase lying in between those of the two voltages, 

depending on their magnitudes. Eq.4.17 gives the phase difference between the input 

voltage and the voltage across the resistor taking the latter as the reference. 

 

4.3.2 Inductor on ac and Inductive reactance 

Fig.4-5 shows a circuit comprising of an 

ac source, vin, a resistor and an inductor in 

series. The loop current il, and voltages vr 

and vl across the resistor and the inductor 

respectively are also shown. The voltage 

vl is related to current il as, 

dt

di
Lv l

l    ... 4.18 

Now if we choose   

il = IL  Sin t  ... 4.19a  
(this is again our choice, for convenience, to have zero phase for vr) 

then   vl =  L IL Cos t = VL Sin( t + /2)  ... 4.19b  

where the peak voltage VL can be related to peak current IL as, 

vr 

vl vin il 

Fig.4-5: Inductor in an ac circuit 

R 

L 
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L

V
I L

L


   ... 4.20 

Similar to the treatment with the capacitor 

above, Eq.4.20 has the form of Ohm’s law if 

the denominator  L on the right hand side is 

considered as a quantity equivalent to a 

resistance. This is the opposition to a current 

posed by the inductor, and is called the 

Inductive Reactance, denoted by the symbol 

XL. Thus  

LX L    ... 4.21a 

and     
L

L
L

X

V
I    ... 4.21b 

Clearly, XL increases with frequency and 

current decreases with frequency. Eq.4.19 

above also indicates that the inductor voltage 

leads the inductor current by a phase angle of 

/2 which is shown in Fig.4-6a. As before, 

here we have chosen the phase of il to be zero and drawn the phasor along the X-axis. 

Considering the voltage across the resistor vr (= il R) and drawing the phasors of the 

two voltages as in Fig.4-6b, we can add them up which should equal the input voltage, 

vin. Note that il and vr have the same phase since R is a constant in the product il R. 

From the phasor diagram we can see that the peak amplitude of the combined voltage, 

which is the input voltage vin here, is given, in terms of the respective peak amplitudes 

of the other voltages, by, 

22

LRIN VVV    ... 4.22 

and the phase angle by, 

R

L

V

V1tan       ... 4.23 

which is inherently positive. Here the phase angle  is basically the phase difference 

between vin and vr with the latter as the reference. Note the essential differences with 

the capacitor circuit above. For the capacitor, the current leads the voltage, while for 

the inductor, the current lags behind the voltage. Here the current grows slowly which 

also supports the dc transient behaviour discussed in the previous chapter. 

 

IL 

VL 

/2 

Fig.4-6: Phasor representation of 

currents and voltages in an  

inductor -resistor circuit 

VIN 
VL 

VR 

 

a 

b 
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Similar to the capacitor circuit before, we can focus on some important results from 

the above discussion. If an inductor and a resistor are in a single ac current loop (no 

other currents are involved) then the voltage across the inductor will be leading the 

voltage across the resistor by /2. This is the same as saying that the voltage across 

the resistor lags behind the voltage across the inductor by /2. The sum of these two 

voltages will have a magnitude given by Eq.4.22 and will have a phase lying in 

between those of the two voltages, depending on their magnitudes. Eq.4.23 gives the 

phase difference between the voltages across the inductor and the resistor 

respectively taking the latter as the reference. 

 

4.3.3 Resistor, Inductor and Capacitor behaviour on ac  

The frequency responses of resistance R, 

capacitive and inductive reactances XC and 

XL are represented graphically in Fig. 4-7. 

Note the shapes, which directly follow the 

definitions of the respective parameters. R 

is a straight line parallel to the frequency 

axis, meaning that its value is the same at 

all frequencies. Inductive reactance (XL = 

L) is a straight line going through the 

origin whose value increases with 

frequency (L = 2 f L  f ). Capacitive 

reactance (XC = 1/ C  1/f ) is a 

rectangular hyperbola. Sometime when a 

complex circuit behaves in a certain way 

with frequency, we try to relate to one of 

these above behaviours. 

Let us summarise the important features of an ideal capacitor: 

i) An ac current can pass through a capacitor. 

ii) With increasing frequency, ac current through a capacitor increases. 

iii) The Capacitive Reactance decreases with increasing frequency (Fig.4-7). 

iv) At infinite frequency the Capacitive Reactance becomes zero, i.e., it essentially 

forms a short circuit. 

v) At zero frequency (i.e., at dc) the Capacitive Reactance becomes infinity, i.e., it 

essentially becomes an open circuit. 

Let us summarise the important features of an ideal inductor: 

i) With increasing frequency, ac current through an inductor decreases. 

Fig.4-7: Behaviours of resistance, 

inductance and capacitance with 

frequency. 

frequency, f 

XC = 1 /C 

XL= L 

 

 

 

 

 

 

R 
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ii) The Inductive Reactance increases with increasing frequency. 

iii) At infinite frequency the Inductive Reactance becomes infinity, i.e., it 

essentially becomes an open circuit. 

iv) At zero frequency (i.e., at dc) the Inductive Reactance becomes zero, i.e., it 

essentially forms a short circuit. 

Let us summarise the important features of an ideal resistor: 

i) With changing frequency, ac current through a resistor remains unchanged. 

ii) A resistor has the same Resistance value at zero frequency (dc), or at infinite 

frequency, or at any other frequency. 

We consider dc to have zero frequency, and XC becomes infinity there. This relates 

to the previous finding that when the dc transients are over, the capacitor 

effectively works as a break (open) in the circuit allowing no current.  

At the other extreme, i.e., at infinite frequency, the capacitor acts as a short. The 

above observations can also be related to the dc transient behaviour. At the moment 

of switching to a dc source, a sudden step rise in voltage can be said to contain a 

very high frequency content (Fourier theorem) and a capacitor allows all the 

current that can flow in a circuit. 

A similar consideration applies for the inductor as well. At dc or zero frequency, an 

ideal inductor offers no opposition (XL = 0) as di/dt is zero, while the opposition is 

infinitely high (XL =) at infinite frequency since di/dt is infinity. 

4.3.4 Both Inductor and Capacitor in series, phase considerations  

Fig.4-8 shows a circuit comprising of an ac source, vin, a resistor, an inductor and a 

capacitor in series. The loop current i, and voltages vr, vl and vc across the resistor the 

inductor and the capacitor respectively are also shown.  

From the above treatments on a 

capacitor and an inductor individually 

in series with a resistor, we may 

deduce that vl would lead the current i 

by /2 while vc would lag behind i by 

/2. This combined phase relationship 

is shown in Fig.4-9a while Fig.4-9b 

shows the phasors for vr, vL and vc. We 

can see the advantage of choosing the 

phase of i (or of vr) as zero in this 

example, as it is intermediate to both 

the other voltages. We can add the 

three voltages in Fig.4-9b in terms of 

the respective peak voltage values as, 

Fig.4-8: Series LCR circuit on ac 

vr R 

L 

C 
vc 

vl 

vin 
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 22

CLRIN VVVV         ... 4.24 

and the phase angle by, (with reference to that 

of vr )  

R

CL

V

VV 
 1tan       ... 4.25 

From above, we can see that the magnitude 

of the peak voltage would be real and 

positive irrespective of the relative 

magnitudes of VL and VC (since they are 

squared) but, the sign of phase angle, , will 

very much depend on their relative 

magnitudes. When VL > VC,  is positive, 

while  is negative for VL < VC. When VL > 

VC, we say that the inductor dominates and 

the circuit has an overall inductive 

behaviour. On the other hand when VL < VC, 

we say that the capacitor dominates and the 

circuit has an overall capacitive behaviour. 

From the above equations a special case 

looks interesting when VL = VC  (magnitudes 

of the respective voltages vL and vc  are equal but they are opposite in phase). Then we have, 

VIN = VR and  = 0. This means that the reactive components cancel each other and the 

circuit behaves as a purely resistive one. When does this happen? From Eq.4.14 and 

Eq.4.21 above we can see that this will happen when XC = XL since the current through 

all of the three devices are the same (current in a loop has to be the same everywhere). This 

will have important implications to be described later. 

We will deal with all the above circuits more thoroughly after we introduce a powerful 

mathematical technique use of Complex numbers. 

4.4 Use of Complex-number functions 

[We assume you know complex number mathematics. In electricity we choose the letter j to 

represent the imaginary operator 1 since i is used to represent current.] 

Seeking to use an exponential function 

We know that differentiation or integration of a sine function gives a cosine function 

and vice versa. On the other hand if we subject an exponential function to the same 

treatments, the basic function remains unchanged. This is advantageous in performing 

mathematical analyses and therefore, we would like to use suitable exponential 

Fig.4-9: Phasor representation of 

currents and voltages in a  

series LCR circuit 
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functions instead of the sinusoidal functions described above for representing electrical 

voltages or currents. 

With the above objective let us examine the Complex exponential function  

e 
jt

 = Cos  t + j Sin  t  ... 4.26 

How can we use this to represent the sinusoidal voltages discussed before? We can see 

that both the real and imaginary parts of Eq.4.26 have terms that can be used to 

represent sinusoidal voltages or currents. So what we do is that, we choose either the 

real part or the imaginary part of the above exponential function, but not both at the 

same time, to represent our real world functions. We do all the complicated 

mathematical analyses involving complex functions, and finally when we arrive at a 

mathematical solution we simply single out our originally chosen part (real or 

imaginary, as appropriate) to get the real world solution. The procedure is 

schematically represented below. 

Obviously we have to choose either one of the above two, not both in  the same work. 

The workings will be clear when we analyse circuits of interest in the later sections. 

When we use a complex representation for a voltage, current, impedance or reactance, 

we usually use a bold faced capital (e.g. V, I, Z, X) in a book. However, for 

handwriting, we cannot do that, so we may use a bar above the symbols with normal 

face (e.g., XZIV ,,, ). Resistance is always real as it does not have a frequency 

dependent term, so it is represented by a normal R symbol always. All magnitudes are 

represented by non-bold capital characters (without bars in handwriting). Remember 

that the magnitude of a complex number is given by the square root of its product with 

its complex conjugate. 

OR 

Complex world 
 --- 

mathematical 
analyses and 

complex solution 

Imaginary part 
represents Real 
world solution 

Real world function 
represented by imaginary 
part of complex function  

Complex world 
 --- 

mathematical 
analyses and 

complex solution 

Real part  
represents Real 
world solution 

Real world function 
represented by Real part 

of complex function  
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As an example of representing a sinusoidal function by a complex number, we see that 

Eq.4.19a (il = IL  Sin t) can be represented by the imaginary part of Eq.4.26. That gives 

us, the complex representation with an exponential function as, 

IL = IL Cos  t + j IL Sin  t = IL (Cos  t + j Sin  t) = IL  e 
jt

 ... 4.27 

remembering that it is only the imaginary term that represents our interests. 

Now, from Eq.4.18 and Eq.4.12, the complex Inductor voltage, 

VL = L dIL/dt = jL IL  e 
jt

   ... 4.28 

Suppose this is the result we want. Then what is the real world mathematical 

expression for the result? Expanding the above we get, 

VL = jL IL(Cos  t + j Sin  t) =  L IL Sin  t+ jL ILCos  t  ... 4.29 

Since we started with the imaginary part, we have to stick to it. Therefore, taking the 

imaginary part from the above expression, we get, for our real world solution, 

vl = L ILCos  t    ... 4.30 

which is the same as Eq.4.19b obtained before. The advantage may not be apparent in 

such a simple analysis. However, when you perform more complex analysis you will 

appreciate the power of the Complex-number technique.  

In a similar way if we want to represent a cosine function as in Eq.4.2 using a complex 

number, we could use the real part of Eq.4.26. After all analyses the result will have to 

be separated into its real and imaginary parts, and the real part here would represent our 

world solution. However, as mentioned above, we cannot mix the two representations, 

we use either the real part and stick to it, or we use the imaginary part and stick to it. 

4.5 Representation of complex number in diagrams, Real and Imaginary axes 

There is a standard form for representing complex numbers in a diagram, which is 

usually called an ‘Argand Diagram’. Here the real part of a number is represented 

along the X-axis and the imaginary part is 

represented along the Y-axis. Suppose a 

complex number is given by  

P = a + jb    ... 4.31a 

Then a is plotted along the X-axis and jb 

along the Y-axis as shown in Fig.4-10a, and 

the complex number itself is represented by 

the diagonal. We can see here that b is also a 

real number. Only when it is multiplied by 

the imaginary operator j it is plotted along 

the Y-axis. So, we can say that when the 

imaginary operator j operates on any real 

number it rotates the direction by 90
0
. 

Fig.4-10a: Complex 

number representation  

a 

 

jb 

a+jb 
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This can be extended further as shown in 

Fig.4-10b. The Real axis is along the X-axis, 

multiplying a real number by j rotates it by 

90
0
 to Y-axis, which we have just discussed. 

Multiplying again by j rotates it by a further 

90
0
 to negative X-axis (since j

 2
= 1, this is 

also real but negative). Finally, another 

multiplication by j rotates the number by a 

further 90
0
 to  ve Y-axis (since j

 3
=  j, this is 

negative of the imaginary axis). Another 

multiplication by j will result in j
 4

= 1 which 

is the original real axis again. We can also 

see from Fig.4-10, 

Magnitude of a +jb = (a
2
 +b

2
) ... 4.31b 

and the angle that the complex number makes with respect to the real axis is, 

 = tan
-1

 (b / a)  ... 4.31c 

4.6  Keeping the form of Ohm’s law intact for ac, complex impedance 

Suppose in a circuit with both resistive and reactive elements (i.e., having R, and either 

or both of L and C) we have  

i = I Sin  t    ... 4.32 

and  vin = VIN Sin( t + ) = I Z Sin( t + )   ... 4.33 

where we have taken  VIN = I Z   for the magnitudes following Ohm’s law. 

According to the complex representation discussed above, we can represent the above 

mentioned ac current and voltage by the corresponding imaginary parts of the 

following complex numbers, 

I = I e
 j

 
t
   ... 4.34 

and  VIN = VIN e
 j(

 
t
 
+

 
)

 = I Z e
 j(

 
t
 
+

 
)

  ... 4.35 

Now Eq.4.35 can be expanded and rearranged as, 

VIN = I Z  e
 j

 
t
  e

 j
 

 = (I  e

 j
 
t
  ) (Z  e

 j
 

)  ... 4.35a 

Here the first part of the right hand expression is simply the complex current I. We can 

make Eq.4.35a to have the form of Ohm’s Law if we represent the second part as the 

complex impedance Z. Then we have, dropping the subscripts for a general expression, 

Z =  Z  e
 j

 

    ... 4.36 

and    V = I Z    ... 4.37 

which is the complex form of Ohm’s law for ac. 

Fig.4-10b: Operation by j 

corresponds to a rotation by 900 

90
o 
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90
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90
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90
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Here we can see that the complex current 

retains the sinusoidal frequency information 

while the phase information of the voltage 

has been transferred to the complex 

impedance.  

We remember from Fig.4-9 that the phase 

angle of the voltages across the inductor and 

the capacitor are 90
0
 and – 90

0
 respectively 

with respect to the voltage across the resistor, 

which we took to have a phase angle of ‘0’. 

Following the above mentioned complex 

representation, we want to transfer these 

phase information to the respective 

reactances. We have seen before (complex 

Argand diagram) that multiplying by j rotates 

a quantity anticlockwise by 90
0
 while multiplying by – j rotates a quantity clockwise by 

90
0 
(i.e., – 90

0
), so that the respective complex reactances can be represented as,  

XL = +  jXL     ... 4.38 

XC = –  jXC     ... 4.39 

where XL and XC are real numbers, and the subscripts indicate whether the reactance is 

inductive or capacitive. These are shown in Fig.4-11 where R, the real part of the 

impedance is shown along the X-axis (reference 0
0
).  

We can represent the general form of reactance as,   

X = ±  jX     ... 4.40 

where a + ve sign is appropriate for an inductive reactance and a – ve sign is 

appropriate for a capacitive reactance. 

Then we can express complex Z, following the form of Eq.4.31, as, 

Z  =  R ±  j X =  R + X  ... 4.41 

Here, R has been shown in normal font since it is always a real number. 

 

APPLICATION TO SOME CIRCUITS OF INTEREST 

We apply the above knowledge to analyse some circuits of interest – particularly RC, 

RL and LRC circuits, and later, transformers. 

4.7 RC high pass filter circuit 

Fig.4-12 shows an RC high pass filter circuit (shaded) which has an input side and an 

output side. It also shows an input voltage source, which we shall consider to be pure 

Fig.4-11: Phasor representation of 

resistance and reactance in a  

series LCR circuit 

XL = j XL 

R 0 

XC =  j XC 
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sinusoidal. Let us represent all the parameters in the circuit using relevant Complex-

numbers where applicable, viz., VIN and XC. Note that R is real always. 

We can see that this circuit is basically a voltage divider, VIN being divided between the 

capacitor and the resistor in series. The total impedance here is  

Z = R + XC    ... 4.42 

We can use the complex phasor diagram of Fig.4-13 to represent R, XC and the total 

impedance Z at an angle  (which is inherently  ve) with respect to R. Here, XC =  jXC  

and Z = Z e
  j 

Using complex form Ohm’s law, current is given by, 

C

ININ

R X

V

Z

V
I


     ... 4.43 

However, we are interested only in the voltage across the resistor here and we name 

this as the output VOUT  (= I R) with respect to the ground. Usually we would like to see 

what fraction of VIN is available at the output, which we call the voltage gain, Av. The 

word gain actually comes from an amplifier where the output is greater than input, and 

gain means how many multiples of input is available at the output. We also extend the 

same usage of the word gain to situations even where the output is less than the input, 

as in this case.  Thus the Complex gain, 

CC jXR

R

R

RRR







XZZI

I

V

V
A

IN

OUT
V   ... 4.44 

whose magnitude is given by (square root of the product with its complex conjugate), 

2

222

1

1

R

XXR

R
A

CC

V






    ... 4.45 

Fig.4-12: RC high pass filter 

VOUT 
XC 

VIN 

R 

Z XC =  j XC 

R 

 

 

Fig.4-13: Impedance phasor 

diagram for the RC high pass filter 
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Now replacing XC using Eq.4.14 (XC  = 1/ C) we get, 

2

2
0

222 1

1

1
1

1














RC

AV
   ... 4.46 

where we have chosen   
CR

1
0         ... 4.47 

Taking  ,2 00 f  we have,   
CR

f
2

1
0    ... 4.48 

and Equation 4.46 can be rewritten as, 

2

2
01

1

f

f
AV



   ... 4.49 

Eq. 4.46 and Eq.4.49 gives two forms of the desired solution for the magnitude of the 

voltage gain and Eq. 4.47 and Eq. 4.48 gives the value of the constants 0 and f0 that 

we have chosen to give us the nice simple forms for the solution. We can see that 0 

has to have the dimension of an angular frequency (it has to cancel ), and is usually 

called the characteristic angular frequency of the circuit as it depends on the circuit 

parameters R and C (remember, RC is called the time constant of this circuit, which is 

appropriate when a dc step voltage is applied). For circuits with different values of R and C, 

0 will be different and the individual values of 0 will allow us to compare the 

behaviours or charcteristics of these different circuits. Therefore we add the adjective, 

‘characteristic’ in the above naming. The corresponding characteristic frequency is 

given by f0. The significance of 0 or f0 will be made clear soon. 

4.7.1 Visualisation of Frequency Response 

To have a preliminary idea about the frequency response, we look at the voltage gain 

obtained from Eq.4.49 at two extreme frequency values as follows, 

when   f  =  (infinity),  AV  = 1  

and when f  = 0 (dc),   AV  = 0  

The above results indicate that at very high frequencies AV has a value close to 1 (unity), 

ie, the circuit allows the input to pass through to output without much attenuation, 

while at low frequencies the gain decreases, becoming almost zero at very low 

frequencies. If we plot AV obtained from Eq. 4.49 as a function of f, the plot would have 
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a behaviour as shown in Fig.4-14a. This is called the frequency response of voltage 

gain. This figure shows that the circuit allows only high frequencies to pass, but not 

low frequencies. Therefore it is called a High-Pass Filter. Note that in Fig. 4-14a both 

the axes are in linear scale. Fig. 4-14b shows the gain in linear scale, but with the 

frequency axis plotted in log scale. A log scale accommodates a very large range of 

frequencies by compressing them. Note the difference in the frequency range and the 

essential change of shape in the two graphs.  From the second graph, we can see that 

for practical purposes, the gain may be considered unity above 10fo, i.e., ten times the 

cut-off frequency, and negligible below 0.1fo, one tenth of the cut-off frequency. 

Eq.4.49 also tells that the maximum voltage gain of 1 is achieved only at infinity, 

meaning that nowhere within the finite range the gain is strictly unity, it is always less 

than unity. 

Why is it called a filter? You know a filter paper (or, a sieve) allows liquids and 

very small particles to pass through but not larger particles. So a filter paper or a 

sieve works as a particle size selective device. Similarly the above circuit acts as an 

electrical frequency selective device in that it allows electrical signals of high 

frequencies to pass, and does not allow signals of low frequencies. Therefore it is 

also called a filter (more strictly, a frequency filter), but obviously it is a filter for 

electrical signals.  

In case of the sieve, or a particle filter if you collect the smaller particles from 

below, and leave out the larger ones, you can call it a ‘small pass filter’. On the 

other hand if you choose to collect larger particles from the top of the filter leaving 

the smaller ones out, you can call it a ‘large pass filter’. Similarly in case of the 

electrical filters if it allows only high frequencies to pass as in the above case, then 

we call it a ‘high pass filter’. If we modify the above circuit (to be described shortly) 

to allow low frequencies to pass only, we call it a ‘low pass filter’. 

Fig.4-14: Gain Frequency response of an RC high pass filter, 

linear-linear scale (a)  and linear-log scale (b). 
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4.8 Significance of 0 or f0 

To see the significance of 0 (or, of f0), let us see what happens when the angular 

frequency  becomes the same as 0 (or, when f equals f0), 

From Eq. 4.43 and Eq.4.46 we can see that, 

when    = 0   or,   f = f0 ,   
2

1
VA      0.707  ... 4.50 

We indicate this point on the plot in Fig.4-14 corresponding to f0 where the gain is 

approximately 0.707 (you now understand how this magic number has come about). Its value 

gives us an idea that the frequencies above it are allowed, or, passed on well, while 

those below are gradually attenuated (reduced). This Characteristic frequency is also 

called the lower cut-off frequency of this high-pass filter circuit. Different high pass 

filter circuits will have different lower cut-off frequencies (depending on the values of R 

and C) and to compare their behaviours we just quote this figure. Such circuits are 

almost invariably used in all amplifier circuits in order to allow a chosen range of 

frequencies, and remove unwanted ones. 

From Eq.4.47 we can write,     
C

R
0

1


     ... 4.51 

Here the Right Hand Side is simply the Reactance of the capacitor at f0. Therefore we 

may say that,  

       at cut-off frequency,           Reactance = Resistance          

 

Example:  Suppose for a circuit, R = 100 k and C = 0.1F, then f0  16Hz.    

For another circuit, let R=10 k and C = 0.1F, then f0  160Hz.  

Thus the first circuit having a cut-off frequency of about 16Hz will allow frequencies above 

16 Hz to pass through which is very good for a High-Fidelity (Hi-Fi) audio amplifier used 

for high quality music (remember, our audio range is 20Hz to 20 kHz). Since there is 

nothing of interest below 20Hz, we tend to cut-off these frequencies. Otherwise noise in 

these frequencies will cause undue power consumption, and might saturate the amplifier 

unnecessarily. On the other hand if there are noise signals overlapping the low frequency 

signals we tend to push the cut-off frequency higher to reduce noise, even at the cost of 

losing some signals. Noise originating from mains electricity at 50Hz poses a big problem. 

Pushing the cut-off to about 160 Hz simply by changing the resistor in the above example 

reduces the 50 Hz noise significantly. Looking at Eq.4.49 and Fig. 4-14 we can see that AV 

can never be made zero ideally, but can be made very low, to get an acceptable sound 

quality. Later we will see how we can reduce such noise further using higher order active 

filters having sharper cut-off. 

In choosing such higher cut-off (~ 200Hz) in audio amplifiers, we lose some quality of the 

resulting sound, but this is better than having a continuous noise in the background. In fact 
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it has been found that we understand speech better if signals with frequency below 200Hz 

are cut out. Therefore you will find that most public address amplifiers (i.e., those that are 

used for speech or ‘address’) have cut-off frequencies of this order. However, amplifiers for 

music would not do this. They would try to reproduce down to 20Hz as much as possible.  

Small radio and cassette recorders have cut-off frequencies at a hundred Hz or more as the 

loud speakers they use are small and cannot reproduce sound of frequencies below 200 Hz 

well. Therefore there is no point in taking all the trouble of making an amplifier working 

down to 20Hz!  

The significance of f0 would be more appreciated if we plot Equation 4.49 in a log-log 

scale instead of the linear-linear or linear-log scales shown in Fig.4-14. In a graph for a 

filter we often want to get information over a wide range of frequencies and voltage 

gains (called dynamic ranges), say, over 10
4
 times each (sometimes we look for dynamic 

ranges of the order of 10
12

!). This whole range cannot be satisfactorily represented in a 

linear scale graph. On the other hand logarithm compresses such vast ranges into 

smaller numerical ranges and a log scale graph can give a better representation of such 

quantities. A 10 times increase in a number correspond to only an increase by unity in 

log10 scale, for example: log10 100 = 2, log10 10 = 1, log10 1 = 0, log10 0.1 = 1, and so 

on (remember, log10 0 =  ). We have already seen its effect on the frequency range in 

Fig.4-14b. However, it would be useful to know about a special log scale for the 

voltage gain, called the ‘decibel’ or dB scale for voltages, which is used widely in 

electronics and the basic concepts are given below. 

4.9 Decibel scale  

This scale was originally introduced to express signal 

power ratios over a large range by compressing them 

using a logarithmic scale.  

If two signal powers are denoted by P1 and P2, then a 

Bel scale is defined in the following way. We say that 

P2 is greater than P1 by, 

1

2
10log

P

P
 Bel units.  ... 4.52 

Now this unit appeared to be very large (the numbers 

smaller) for power ratios encountered practically in 

signals. For example for a power difference of 10
4
, 

we would get only 4 Bels. Besides, to express smaller 

intervals, people seem to prefer integers, not numbers 

with decimal points. Therefore, people preferred to 

use deci-Bel unit, or the dB unit (remember, Greek deci 

means 1/10, so that 4 Bel would become 40 dB). We 

would now say that signal 2 is greater than signal 1 in 

 
 

Circuit 1 

v1 

R 

 
 

Circuit 2 

v2 

R 

Fig.4-15: Basics of 

definition for decibel. 
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power by,  

dB
P

P
log10

1

2
10    ... 4.53 

This is the basis of the dB scale. 

Now suppose we would like to compare two electrical signals having voltages v1 and v2 

respectively, each terminating into equal resistances R as shown in Fig. 4-15. So the 

corresponding powers are,  

R

v
Pand

R

v
P

2

2
2

2

1
1    ... 4.54 

then,   
1

2
102

1

2
2

10

1

2
10

v

v
log20

v

v
log10

P

P
log10    ... 4.55 

where the R term cancels out on division. Therefore we can also say that signal 2 is 

greater than signal 1 in power by  

dB
v

v
log20

1

2
10   ... 4.56 

This is only a different expression in terms of voltages rather than powers as given by 

expression 4.53, but refers to the same quantity.  

4.9.1 Voltage dB scale 

However, people have a tendency to carry things further on, so that some people used 

the above expression for dB scale using voltage ratios even when the terminating 

resistances in Fig.4-15 are not equal. Strictly speaking, we cannot do this, as the R 

terms then do not cancel in the above deductions. However, people became very fond 

of this expression and wanted to use it in all sorts of comparisons. They argued that let 

us define a new scale to express signal voltage ratios using the above expression (Exp. 

4.56) knowing fully well that this does not necessarily represent a power ratio. So they 

called it a Voltage dB scale. Obviously this equals a power ratio only if both the 

terminating resistances are equal, otherwise not. This scale is widely used. 

To make yourselves familiar with this scale a table for linear voltage ratios and the 

corresponding dB values are given below. Try to put the numbers into your brain. Note, 

for ratios less than one, negative dB numbers are expected.  

Voltage ratio dB difference  Voltage ratio dB difference 

0.1 - 20  100 40 

1 0  1000 60 

10 20  10000 80 
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You can see that for each ten times increase in voltage gain, the dB value increases by 

20. That is, multiples are replaced by addition (this is expected, since log AB = log A + log 

B). This gives us an advantage. If we have two amplifiers connected sequentially, and 

each with a gain of 100, then the total gain is 100 x 100 =10000, which is given by a 

product of the individual gains. On the other hand in the dB scale we have to simply 

add them up algebraically. For the above example, the total gain in dB scale is 40 + 40 

= 80 dB, which is just equivalent to 10000 as we can see from the above table. In the 

above example we have used easy numbers for voltage ratios with all 0’s after 1. With 

not so simple numbers, which is easier – multiplication or addition? 

4.10 Log-Log plot using dB scale for gain, Cut-off frequency  

A log-log graph of the frequency response of voltage gain of a high pass filter, using 

dB scale for the voltage gain, is shown in Fig.4-16a (note: dB scale itself is a log scale).  

According to the table given above, the maximum linear voltage gain of 1 becomes 0 in 

the dB scale. Since the other ratios at lower frequencies are less than 1, they appear as 

negative dB values. What is the value of gain in dB at cut-off frequency? Since the gain 

is 1/2 at cut-off,  

3303.0102log10
2

1
log20

2

1

2

1
log20 101010   

That is, the cut-off frequency f0 occurs at – 3dB gain, which is worth remembering. 

This also tells us that if the high frequency gain is anything other than 0 dB, the value 

at cut-off would be simply 3 dB less than that value.  

Fig.4-16a: Frequency response of Gain of RC high pass filter, log–log plot (gain in dB scale) 
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There is an interesting aspect to this plot. We can see in Fig.4-16a that the curve has 

two approximate linear segments, one going down at low frequencies, and the other is 

the horizontal section (= 0 dB) at high frequencies. If we extend these straight lines they 

intersect at f0 which is really significant. 

 

4.11 Bode plot, Rolling-off slope 

Some people prefer to approximate the filter using the above mentioned two straight-

line segments only, forgetting the real curved plot totally. This simplified plot in the 

log-log scale (Fig.4-16b) is called a ‘Bode plot’ and here f0 assumes a significant role. 

In the Bode plot, all frequencies above f0 are assumed to have a constant gain (here, 0 

dB) while frequencies below f0 are attenuated with a constant slope, called the Rolling-

off slope. 

We can find the slope of the rolling-off segment of the curve using Eq.4.49. Let us 

choose frequencies 0.1 f0, 0.01 f0, etc. each 10 times less than the previous one and 

calculate the corresponding Av, and see the pattern.  

At   f = 0.1 f0,  f0  = 10 f,  so that,   AV = 1/101      1 / 10  =  0.1 

At   f = 0.01 f0,  f0  = 100 f,  so that,   AV  = 1/10001  1 / 100 = 0.01 

These two points are also shown in the figure. The pattern will follow down to any 

lower gain. We can see that the gain is reduced by 10 times for each 10 times reduction 

in frequency. A ten times range of frequency is called a decade of frequency and from 

the above table we can see that a 10 times gain change is equivalent to a 20 dB change 

in the dB scale (which is additive or subtractive). Therefore we say that the gain reduces 

Fig.4-16b: Bode plot for an RC high pass filter 
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by 20dB per decade of frequency, which is the Rolling off slope we are looking for. 

Since this slope is constant and known, we can calculate the gain at any frequency for 

such a filter if we know f0, or if we know the gain at any frequency lower than f0.  

There is an alternative description of the rolling-off slope. In music if the frequency is 

doubled or halved, this range is called an Octave. The middle C note has a frequency of 

256 Hz, while 512 Hz is the frequency for the C note an octave higher. Thus the range 

between f0 and o.5f0 is an Octave. From Eq.4.49 we can calculate in a similar way that 

the Rolling-off slope is 6 dB per Octave of frequencies (find out yourself!). 

So memorising the above two figures for slopes help in quick mental estimation of 

gains in any practical design situation. 

Ex.1    Let f0 =200 Hz for a high pass filter as above. What is the gain at i) 2Hz and 

at ii) 25Hz? 

Ans. i) 2 Hz is 2 decades (steps: 20, 2) lower than f0, therefore the gain at 2Hz will 

be – 40dB (20 + 20 below 0). 

ii) 25Hz is 3 octaves below 200Hz (steps: 100, 50, 25), therefore the gain at 25Hz 

would be –18dB (36 below 0). 

 

4.12 Order of filter, ideal filter, Passive and Active filter  

The above rolling off slope of 20dB per Decade is obtained through the simple circuit 

shown in Fig. 4-12, and any filter with this slope is called a First Order Filter. If two of 

such filters are arranged in tandem (two in series) as shown in Fig.4-17, the slope would 

be doubled as the gain at each frequency is squared. Here we have to add an extra unity 

gain buffer circuitry in between to stop the impedance of one affecting the other. The 

doubling of slope is due to addition of logarithms of the two individual gains (see for 

yourself by analysing the total gain by squaring Eq.4.49). 

Such a filter is called a Second Order Filter and has a slope of 40 dB per Decade, or, 

12 dB per Octave. We can similarly conceive of higher order filters with greater rolling 

off slopes, giving sharper and sharper cut-off.  

Fig.4-17: 2nd order RC high pass filter 
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What is an ideal filter? From the 

above, if we imagine the rolling 

off slope to go on increasing we 

would reach an ideal filter as 

shown in Fig. 4-18 where nothing 

is passed below f0 while 100% is 

passed above f0. This is an ideal 

characteristics which we would 

like to have but can never attain in 

practice. 

As mentioned above, cascading 

(placing in series) simple filter 

circuits directly is not practical as 

the output impedance of the first 

would be affected by the input 

impedance of the next and so on, 

and the gain would keep on 

decreasing too as it is never ‘1’ at 

any finite frequency. Therefore for 

practical realisation we usually 

incorporate amplifier circuits 

employing transistors after each 

filter circuit when the whole is 

called an Active Filter circuit. These can be easily cascaded and the gain can also be 

adjusted to compensate for any reduction. In fact the gain is usually more than unity. 

Fig. 4-19 shows the scheme of an active 1
st
 order High pass filter circuit. We shall 

study more of it later. 

Circuits as in Fig.4-19 are called Active Filter Circuits as these take power from a 

source (usually a dc battery) to operate. We define an active circuit as the one that 

takes power from an external source while a passive circuit takes none. Therefore 

the circuit shown in Fig. 4-12 is a 1
st
 order passive filter since it does not take 

power from any external source. Active filters are versatile in that they can be 

easily cascaded as mentioned above. However, unexpected behaviours creep in as 

one does such cascading with the intention of increasing the order of the filter, and 

therefore, active filter design has become a special sub-branch of study.  

4.13 Phase response 

Fig. 4-20a shows a voltage phasor diagram for the RC filter circuit of Fig.4-12. Here 

the voltage amplitude VR across resistor is plotted along the X-axis and the voltage 

amplitude VC across capacitor is plotted along the negative Y-axis since VC lags behind 

VR by 90. The vector sum of the voltages amplitudes, across both the resistor and the 

fo f 

Av 
 

Fig.4-18: Ideal high-pass filter 

Fig.4-19: Active 1st order RC high pass filter 
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capacitor together, is basically VIN here. The 

phase angle between VR and VIN is  with 

VIN lagging behind VR as shown.  

The corresponding impedance phasor 

diagram for the RC filter circuit was shown 

in Fig. 4.13 and is reproduced in Fig.4-20b. 

The resultant impedance, Z, is along the 

direction of the total voltage VIN. Thus the 

phase of VIN with reference to that of VR is 

given by, with the help of the impedance 

phasor diagram (Fig.4-20b), as, 

R

X C1tan    ... 4.57 

where a – ve sign appears as XC lies along 

the – ve Y-axis.  

Using XC = 1/C (Eq. 4.14), we get, 

CR


1
tan 1   ... 4.58a 

The above relation gives the phase angle of vin with respect to that of vr (or vout). 

However, in a filter circuit, it is usual to talk about the phase of the output voltage with 

respect to that of the input voltage as opposed to the above choice. Therefore we will 

obtain the phase angle using Eq.4.58a, but will say that the output voltage vout leads the 

input voltage vin by a phase angle of . Since this description makes the phase angle 

positive, let us name this positive phase angle as  so that we have,  

 
CR


1

tan 1   ... 4.58b 

Plotting Eq. 4.58b as a function of frequency gives us a phase response curve as shown 

in Fig.4.21.  We have plotted the phase response against frequency plotted in both 

linear scale (Fig.4-21a) and log scale (Fig.4-21b). Note the differences in the features of 

these two plots.  

From the above equation we find that (remember,  = 2 f and 0 = 2 f0), 

    0   as   f   ,  and     90   as   f  0 

Besides, when   CR =1, i.e., when, 0

1
 

CR
,  

i.e., when     f = f0 ,     we get,   =  45
o
 

Fig.4-20: Voltage (a) and Impedance (b) 

phasor diagrams for RC high pass filter 
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A small point is worth noting here. At high frequencies where the voltage gain is nearly 

1, i.e., the input is almost fully allowed to pass, the phase difference is almost 0
o
, while 

at low frequencies where voltage gain is nearly zero, the phase difference is about 90. 

Besides, at cut-off frequency the phase difference is 45 which indicates that although 

the gain is very near to unity around the cut-off frequency, there is considerable phase 

difference and this distorts compound waveforms which contain many frequency 

components. The components at higher frequencies may suffer a negligible phase 

difference while those near the cut-off will suffer about 45
o
. After filtration the 

resulting waveform will be distorted, having a different shape than the original one. 

Therefore to avoid such distortion, we usually set the lower cut-off frequency at 5 to 

ten times below the lowest frequency content in a signal. 

 

4.14 R-C Low pass filter  

A simple rearrangement of the high pass filter circuit in Fig.4-12 will give us an RC 

Low pass filter shown in Fig.4-22 (dark shaded). As before, it has an input ac sinusoidal 

voltage source vin, and an output vout. However, here the output is taken across the 

capacitor instead of the resistor. Therefore we have rearranged the circuit such that one 

side of the capacitor is at ground potential, common to both input and output. The 

corresponding voltage phasor diagram is shown in Fig.4-23a where the output 

amplitude VOUT is shown along the –ve Y-axis since it is essentially VC in this case, 

different from that for the RC high pass filter shown in Figs. 4-12 and 4-20 earlier. The 

corresponding impedance phasor diagram is shown in Fig.4-23b. Here phasor XC has 

the same direction as VOUT and phasor Z has the same direction as VIN. The input vin is 

the voltage dropped across the whole impedance Z, and the output vout is the voltage 

dropped across reactance XC. As before, we would like to see what fraction of vin is 

Fig.4-21: Frequency response of phase difference between input and output voltages 

with frequency in linear scale (a), and in log scale (b). 
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available at the output, which we call the 

voltage gain, AV, as a function of 

frequency. Besides, we would also like to 

see the phase difference  between vout and 

vin as a function of frequency.  

4.14.1 Voltage gain response 

To analyse, we can use the appropriate ac 

form of Eq. 2.13 for this voltage divider. 

Thus if the reactance (complex form) of 

the capacitor be XC, then the Complex 

gain, 

C

CC

IN

OUT
V

R X

X

ZI

XI

V

V
A


     ... 4.59 

Compare this with Eq.4-43 for a high-pass filter. The denominator is the same in both. 

However, in the previous case R was there on the numerator, while we have XC in the 

present case, which relates to the circuit element across which the output voltage is 

measured. 

We can write eq.4.59 as, (using XC =  j /  C) 

CRj

C

j
R

C

j

V














1

1
A

 ... 4.60a 

where we have used the relation, 1/ j  = + j. The 

magnitude of gain, AV, is given by, using the 

definition of o given earlier (=1/CR), 

2
0

2222

1

1

1

1










RC

AV

  

 ... 4.60b 

We can then rewrite Equation 4.60b in terms of the 

frequencies as, 

2
0

2

1

1

f

f
AV



   ... 4.60c 

Fig.4-22: RC low pass filter 
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Note the difference from Eq.4.49. Here we have f / f0 while it was f0 / f  in the previous 

case. Plotting Eq.4.60c gives us Fig.4-24a which shows that it allows only low 

frequencies below f0 to pass but increasingly blocks those above f0. Therefore it is 

called a Low-pass filter circuit. Again, the voltage gain is 0.707 at f0, the upper cut-off 

frequency of this low pass filter. The corresponding log-log plot with the voltage gain 

expressed in dB scale is shown in Fig.4-24b where the gain is –3dB at f0. The 

corresponding simplified Bode-plot is also indicated in the figure by the dotted lines. 

The rolling off slope is the same as that before, i.e., 20dB per decade, or 6dB per 

Octave. 

4.14.2 Phase response 

The complex phasor diagram of impedance is shown in Fig.4-23b, and here the phasors 

of interest are XC and Z with a phase angle  between them. We can see that the phase 

angle would be given by, using Eq.4-14 (XC = 1/ C) 

CR
X

R

C

 11 tantan      ... 4.61 

where –ve sign appears again since XC is along the –ve Y-axis.  

In relation to Fig.4-23a, we can see that this is the same angle as between vc, which is 

the output voltage vout in this case, and the input voltage vin. We can also see that vout is 

lagging behind vin. Therefore, according to our usual way of expressing output with 

reference to input, this angle  would be inherently negative, so we can use Eq.4.61 

directly for the desired phase angle of vout with respect to that of vin. 

This is plotted in Fig.4-25. Here  = 0
 o
 at f = 0 (dc),  90

 o
 at f = (infinity), and  45

o
 

at f = f0 . Comparing with Fig.4-21 for the high-pass filter we can see that it is just the 

Fig.4-24a: Frequency response of voltage 

gain for an RC low pass filter, linear gain 

scale 

Fig.4-24b: Frequency response of voltage gain 

for  an RC low pass filter, gain in dB scale 
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reverse. However, we can note a similarity between voltage gain and the phase 

difference, and can say that, 

at low frequencies where the voltage gain is nearly 1, i.e., the input is almost fully 

allowed to pass, the phase difference is almost 0 

o
, while at high frequencies where 

voltage gain is nearly zero, the phase difference is about 90 .  

4.15 Combination of high and low pass filters 

Bandpass, narrowband and notch filters 

We can get different types of composite frequency responses when we combine a high 

pass and a low pass filter with different cut-off frequencies in cascade (with appropriate 

buffers in between). Some of these responses are shown in Fig.4-26. If the cut-off 

frequency for the low pass filter is much greater than that for the high pass filter, we 

get a wide bandpass filter as in Fig.4-26a. Here we rename the cut-off frequencies as 

upper cut-off fu and lower cut-off fl as indicated in the figure. Therefore for a wide 

bandpass filter, fu >> fl. A new term, the bandwidth (BW) is defined as, 

BW =  fu  fl   ... 4.62 

which signifies the range of frequencies allowed by a bandpass filter. Such filters are 

inherently built into typical ac amplifiers, or are intentionally introduced to achieve a 

particular characteristics. So the bandwidth gives an idea of the quality of an amplifier, 

what range of frequencies it can amplify. A good High Fidelity (Hi-Fi) audio amplifier 

should have a bandwidth of about 20kHz (20kHz – 20Hz  20kHz). In low cost audio 

amplifiers (as those used in radios and cassette recorders), the bandwidth  may be less 

than this. In such low cost audio equipment a Tone Control is usually provided. This 

basically shifts the upper cut-off frequency fu up and down. Normally we keep fu at a 

high value. If there is a hissing noise (which has a high frequency content) we simply 

decrease fu to eliminate the hissing noise. We lose some signal too, but a noise free 

100 fo 
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Fig.4-25: Frequency 
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signal of slightly lower quality is better than a noisy signal. This control is achieved by 

manipulating a variable resistor which forms the resistance element of an RC low pass 

filter, Some amplifiers have separate BASS and TREBLE tone controls. BASS refers to 

low frequency sound signals and one adjusts fl of a high pass filter for BASS control, 

while TREBLE refers to high frequency sound signals and one adjusts fu for TREBLE 

control. Bandwidth is an important parameter for electronic amplifiers. For television, 

the video amplifiers need a bandwidth of about 6MHz, much larger than that of an 

audio amplifier. 

If we decrease the bandwidth, we can achieve a narrow band pass filter as shown in 

Fig.4-26b. This amplifies a narrow band of frequencies only and rejects all others. 

However, to make this bandwidth very narrow, when we call it a tuned filter, we 

usually go for a resonant LCR circuit to be described later in this chapter. Again if we 

move the cut-off frequencies such that fu falls below fl as shown in Fig.4-26c, it is 

called a band-reject or band stop filter. If the rejection is very sharp then we call it a 

notch filter. Such filters are necessary to reject noise of specific frequencies that fall 

within a signal range. A typical example is the 50Hz noise from the mains electricity 

which causes severe interference in medical signals like ECG of the heart, EMG of 

muscles, and EEG of the brain where the signal frequency contents spread to both sides 

of 50Hz. Such notch filters are often used to get rid of the interfering 50Hz. 

 

Fig.4-26: 

Frequency response 
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4.16 Series LCR circuit 

Let us consider the LCR circuit shown in 

Fig.4-27. It is called a series LCR circuit as all 

the elements are in a series loop with an input 

voltage source vin having the same current i 

passing through them. 

The total reactance in the circuit is given by,  

X = XL + XC = j(XL – XC) ... 4.63 

where the –ve sign for XC  appears as it is 180
0
 

opposite to XL in phase, as discussed before. 

Therefore the total impedance in this circuit is,

  

Z = R + X = R + XL + XC  

= R +  j(XL – XC)  ... 4.64a 

Note that the imaginary term can be either +ve 

or –ve, depending on the relative magnitudes 

of XL and XC. The magnitude of impedance is, 

2
CL

2 )XX(RZ   or, 

2

2

C

1
LRZ 











  ... 4.64b 

We can use the voltage phasor diagram of 

Fig.4-28a and the complex impedance phasor 

diagram of Fig.4-28b to represent the LCR 

circuit. From Fig.4-28b, the total impedance, 

Z can be determined in terms of R, XL and XC 

which is the same as that obtained from 

Eq.4.64 a & b above. Let us draw the net 

reactance phasor X (Eq.4.63) on the vertical 

axis. For a general treatment, to keep the 

expressions outwardly positive, let us assume XL > XC and draw the phasors 

accordingly. The total impedance Z (= Z e
  j ) will be given, both in magnitude and 

phase, by the diagonal of the rectangle formed by the phasors R and X. If XL < XC, then 

–ve signs will appear at appropriate places during analysis and the phasor of the total 

reactance will point downwards in Fig.4-28b. The phase angles of the corresponding 

voltages are shown in Fig.4-28a.
 

Fig.4-28: Voltage (a) and 

Impedance (b) Phasor diagrams of 

a series LCR circuit 
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Applying Ohm’s law for complex numbers, we get, 

X

V

Z

V
I




R

ININ     ... 4.65 

However, as before we are interested in the voltage across the resistor and name this as 

the output (VOUT  = I R) with respect to the ground. Therefore, the voltage gain, AV is 

given by, 

)()( CLIN

OUT
V

XXjR

R

R

R







XI

I

V

V
A    ... 4.66 

Using XL =  j L and XC =  j /  C, we can write Eq.4.66 as, 

)
1

(
C

LjR

R
V


 

A
   ... 4.67 

The magnitude of gain AV is given by,  

2

2 1












C
LR

R
AV




  ... 4.68 

and the phase angle by, 

R

C
L )

1
(

tan 1 






 
   ... 4.69 

 

4.16.1 Frequency Response, Resonance 

Looking at Eqs.4-64, 4.68 and 4.69, we can see that if  L > 1/C the inductor 

dominates the impedance, and the phase  is positive. On the other hand if  L < 1/C 

the capacitor dominates the impedance, and the phase  is negative. An interesting case 

occurs for the frequency at which  L = 1/C. Let us call this angular frequency as o 

and the corresponding frequency as fo.  Here the value of impedance Z is minimum and 

is simply R, while the gain AV is maximum at unity (since the term within bracket in the 

denominator is zero), and the phase angle  is zero. For any other frequency, the 

denominator of Eq.4.68 will be greater, reducing the voltage gain. The LCR circuit is 

said to go through a ‘Resonance’ at this special frequency. The meaning of resonance 

will be elaborated later. From the above discussion we can see that this resonance 

occurs when, 
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C
L

0

0

1


  , 

 i.e., at an angular frequency,  

 
LC

1
0          ... 4.70  

The corresponding Resonance 

frequency being, 

LC
f

2

1
0 

         ... 4.71 

If we plot Eqs.4.64, 4.68 and 

4.69 against frequency, giving 

the abcissa values as 

multiples of the resonance 

frequency fo, we shall get the 

respective frequency 

responses as shown in Figs.4-

29 a, b &c respectively . 

The above mentioned features 

can be clearly seen in these 

diagrams. We can see in 

Fig.4-29a that below the 

resonant frequency the 

impedance decreases almost 

exponentially  with increasing 

frequency – a capacitive 

behaviour – that we saw in 

Fig.4-7 before. On the other 

hand, above the resonant 

frequency, the impedance 

increases almost linearly  

with increasing frequency – 

an inductive behaviour. The  

impedance is a minimum at 

resonance.  From Eq.4.64 it 

can be seen that the 

impedance is purely resistive 

(equal to R) at resonance. 

What happens is that the 

voltages across the 

Fig.4-29: Frequency response of series LCR circuit 

parameters. a) Total impedance,   b) Current or Voltage 

gain for output taken across resistor, c) Phase difference 

between output and input voltages. 
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capacitance and the inductance are exactly equal in magnitude but are in opposite 

phase, therefore they cancel each other completely.  This can also be appreciated from 

the impedance phasor diagram Fig.4-28b where XL – XC is zero.  

Therefore we get the maximum current, and consequently the maximum voltage across 

the series resistor at resonance which is also evident in Fig.4-29b. The gain falls steeply 

away from fo on both sides. This is a typical resonance pattern. Note that the gain curve 

is not symmetric around fo. This is because of the different behaviour of the capacitive 

and inductive reactances which dominate the two sides as discussed above (on one side 

e 
f
  behaviour, while 1/f  behaviour on the other).  

The phase response shown in Fig.4-29c is also interesting. The phase is positive for f > 

fo, an inductive behaviour, while the phase is negative for f < fo, a capacitive behaviour, 

and at resonance, the phase is zero. The circuit behaviour is simply resistive at 

resonance, as also observed before. At the two extremes and at resonance, we have, 

at  f=+ (infinity),    = + 90
0
 (totally inductive) 

at f=f0,    = 0  (totally Resistive) 

at  f=  (infinity),    =  90
0 

(totally capacitive) 

4.16.2 What is Resonance? 

What is Resonance? Resonance involves two objects one of which attempts to transfer 

a periodically oscillating energy to the other. Here, these two objects are the signal 

generator, and the LCR circuit respectively. The signal generator applies a periodic 

oscillatory potential on the LCR circuit. The LCR circuit has its own natural frequency 

of oscillation given by Eq.4.71 which was also obtained in the previous chapter while 

discussing dc transients. When the frequency of the periodic driving potential exactly 

equals the natural frequency of the LCR circuit, there is resonance, and we get a 

maximum voltage gain. 

(see the previous chapter on dc transients and basic books on Physics, e.g., by Halliday and 

Resnick).   

4.16.3 Cut-off frequencies, Bandwidth 

(To keep the expressions simple, in the following treatment we will often refer to angular 

frequency as simply frequency, and bandwidth will refer to this angular frequency as well. 

Simple frequency and angular frequency terms will be used interchangeably and you have to 

understand the expression as relevant.) 

To get the upper and lower cut-off frequencies of the resonance curve shown in Fig.4-

29b, we use Eq.4.68. Following previous arguments, we can see that  

2

1
VA  = 0.707 when   










C
L




1  =  R ... 4.72  



Chapter 4 AC Circuits 

 111 

i.e., the voltage gain will become 0.707 times the maximum gain when the total 

reactance equals total resistance in the circuit.  So the cut-off frequencies will occur at 

frequencies given by the solutions of Eq.4.72 and as shown by fu and fl in Fig.4-29b.  

We have to note that  L > (1/C) for the upper cut-off frequency which is above the 

resonance frequency. So we have to use the + ve sign in Eq.4.72. Thus for the upper 

cut-off angular frequency u, we get, 

01
2

 CRLC uu     ... 4.73 

wherefrom,  
LC

LCRCCR
u

2

422 
   ... 4.74a 

Since the square root term on the numerator is always greater than CR, using the –ve 

sign will result in a negative frequency which is not physically valid. Therefore we use 

the + ve sign only in Eq.4.74a and the upper cut-off frequency is given by, 

 
LC

LCRCCR
u

2

422 
   ... 4.74b 

The lower cut-off frequency is below the resonance frequency, therefore,  L < (1/C) 

and we have to use the  ve sign in Eq.4.72. Thus for the lower cut-off frequencyl, we 

get, 

01
2

 CRLC ll     ... 4.75 

wherefrom,  
LC

LCRCCR
l

2

422 
   ... 4.76a 

Since the square root term on the numerator is always greater than CR, using the –ve 

sign will result in a negative frequency which is not physically valid. Therefore we use 

the + ve sign only in Eq.4.76a and the lower cut-off frequency is given by, 

 
LC

LCRCCR
l

2

422 
   ... 4.76b 

Now the bandwidth (BW) is given by the subtraction of Eq.4.76b from Eq.4.74b as, 

BW = (u  l) = 
LC

CR  = 0
2
CR  ... 4.77a  

where Eq.4.70 has been used to get the last form of the expression. The above is in 

terms of the angular frequency. In terms of simple frequency, 

BW = 0
2
CR /2  ... 4.77b  
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4.16.3 Q-factor 

The Quality factor, or Q-factor of a 

resonance curve describes how 

steep the curve is at resonance and 

is defined as the ratio of its 

resonance frequency to bandwidth, 

lu

Q





 0    ... 4.78a 

Taking the common factor 2 out 

of the above, the Q factor is also 

expressed as, 

lu

o

ff

f
Q


  ... 4.78b 

Looking at Fig.4-30, note that, 

steeper the curve, smaller is the bandwidth. This means that Q is large if the bandwidth 

is small and vice versa. In Fig.4-30, Q1 > Q2 > Q3, and obviously curve 1 is the 

steepest. We use a resonant circuit mostly to select an individual frequency and to 

eliminate others. Therefore we look for as large a Q-factor as possible. Practically, Q 

>10 gives a reasonably acceptable value but in special applications much higher Q-

values are required. 

For the series resonant LCR circuit, we can express the Q-factor in one of the several 

ways given below, which use Eqs.4.70, 4.77 and 4.78, 

R

L

R

C

CR
Q 00

0

1
1 


     ... 4.79 

This basically says that the  

cetansisRe

sonanceReatCorLeitherofcetanacRe
factorQ   

which is a good thing to remember. 

4.17 Series-Parallel LCR circuit 

Let us consider the series-parallel LCR circuit shown in Fig.4-31. In this arrangement 

the L and C are in parallel and R is in series. R could be the internal resistance of the 

input source. The input voltage source vin, the main loop current i, and the voltages vx 

across the parallel LC section and vr across the resistor R are shown. The potential and 

the complex impedance phasor diagrams are shown in Fig.4-32 a&b. 

Fig.4-30: Resonance curves (current) of varying  

Q-factor for a series LCR circuit. Q1 > Q2 > Q3 
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The reactance of the parallel LC section is given by, 

11

CL

1

CL

C
L

1
j

jX

1

jX

111
































 

XX
X   

or, X = 
LC1

L
j

2




   ... 4.80 

We can see that when, 1  
2

 LC = 0, the reactance becomes infinity. This condition 

occurs at a frequency given by, 

 
LC

1
0     ... 4.81a 

or, 

 
LC2

1
f0


    ... 4.81b 

We can also see that the reactance can be either 

+ ve or – ve depending on the frequency. From 

4.80 we can specifically see that the reactance 

will be +ve and inductive in nature for  < o 

(when 2
LC < 1). The reactance will be  –ve and 

capacitive in nature for  > o (when 2
LC > 1), 

and zero for =o (when 2
LC=1). These are 

just the reverse of the qualitative conditions of 

the series LCR circuit discussed before. The 

reactance phasor X is shown in Fig.4-32b.  

The total impedance is,  

Z = R + X = 
LC1

L
jR

2




   ... 4.82 

The complex loop current will be given by, 

Lj)LC1(R

)LC1(
2

2
ININ










V

Z

V
I   ... 4.83 

If we take the voltage vx across the parallel LC 

section, the voltage gain would be, 

Lj)LC1(R

Lj
2V








Z

X
A  ... 4.84 

and if we take the voltage vr across the resistor R, 

the voltage gain would be, 

Fig.4-31: A series- parallel  

LCR circuit 
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Fig.4-32: Voltage (a) and 

Impedance (b) Phasor diagrams  

for a series LCR circuit 
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Lj)LC1(R

)LC1(RR
2

2

V









Z
A  

 ... 4.85 

The phase angle  between vr and vin is 

given by, 

)LC1(R

L
tan

R

X
tan

2

11







    

... 4.86 

From the above equations we can 

determine the respective magnitudes of 

the impedance and the two voltage gains 

as, 

22

22
2

)LC1(

L
RZ






  ... 4.87 

 
22222

V

L)LC1(R

L
A






  

  (across LC) ... 4.88 

22222

22

V

L)LC1(R

)LC1(R
A








  

 (across R) ... 4.89 

Plots of the above equations will 

demonstrate the essential features of 

these solutions as given in Fig.4-33 a, b 

& c. 

We can see from Eqs.4.81 and 4.87 that 

the magnitude of the impedance would be 

infinity at o. This behaviour is shown in 

Fig.4-33a where the top of the curve 

closing in from the two sides is left open 

as it tends to infinity at fo corresponding 

to o. At frequencies away from fo, the 

impedance magnitude will be finite and 

decreasing bothways.  

Looking at the voltage gain curve with 

Fig.4-33: Series-Parallel LCR circuit:  

a) Total impedance, b) Voltage gain across LC, 

c) Current / Voltage gain across R, d) Phase 

diff. between output across R and input. 
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output taken across the LC section (Av, Fig.4-33b) we can see that the voltage gain is a 

maximum of unity at this frequency and decreases on both sides of this frequency. This 

is evident from Eq.4-88 where the term (1- 
2
LC) in the denominator becomes zero at 

fo and the resulting value becomes unity. Physically, at fo the impedance of the LC 

section is infinity, so all the voltage of the input source is dropped across this LC 

section, and the gain therefore, is unity. So here we have a phenomenon of Resonance 

as well with f0 as the resonance frequency. 

If we look at the voltage dropped across the resistor R instead of the LC section we will 

see a completely reversed picture. This voltage gain Av given by Eq.4.89 and 

demonstrated in Fig.4-33c is zero at resonance fo and it increases away from fo on both 

sides. We can appreciate that this voltage should have the same behaviour as the main 

loop current. Since the impedance of the LC section is infinity at fo , the current is zero 

and the gain Av is zero too. Because of this inverse behaviour, when the output is taken 

across the resistor, it is sometimes called an Anti-resonant circuit.  

The phase  between the voltage vr dropped across the resistor and the input vin and is 

plotted in Fig.4-33d. The phase angle is positive below fo and rises from zero gradually 

to +90
o
. It then goes through an abrupt change from +90

o
 to –90

o
 at resonance. Beyond 

fo the phase angle again rises gradually to zero. 

The cut-off frequency, bandwidth and the Q-factor can be obtained following methods 

carried out before for the series LCR circuit. However, as these will be somewhat more 

complex we do not attempt this here, but you should give it a try. 

4.17.1 What happens at resonance? 

What happens at resonance is that once the 

inductance and the capacitance get the 

necessary tick (pulsed energy) to get going, 

they sequentially store and release the total 

energy between themselves periodically in a 

sinusoidal manner. Ideally no extra energy is 

needed from outside to continue this activity. 

Therefore to the outside world (i.e., to source 

vin) the impedance of this parallel LC section 

is infinity and no current flows in the main 

loop (i = 0). Because of the sequential storage 

and release of energy between L and C, there 

will be a sinusoidal current within the closed 

loop formed by these two elements (i in Fig. 

4-34), but there will be no current in the outer 

circuit. In practice, the inductor and the 

capacitance both will have some internal resistance which will dissipate energy, and 

therefore, there will be a finite but very high value of impedance. Correspondingly, the 

main loop current will be somewhat greater than zero at resonance.  

Fig.4-34: A series-parallel LCR 

circuit at resonance 

i = 0 

vin 

i 0 
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4.17.2 Application in radio station tuning 

The parallel LC circuit is used widely in frequency selective networks, tuned amplifiers 

and oscillators, particularly at high frequencies (radio frequencies). Fig.4-35 shows the 

basic scheme of a simple radio receiver employing a parallel LC circuit as its Tuning 

circuit. The capacitor of the LC tuning circuit is variable and can be manipulated by the 

user to vary its 

resonance frequency. In 

parallel to the tuning 

circuit is connected a 

radio receiver circuit 

which has the 

necessary capability to 

extract desired audio 

signals from the radio 

waves and to generate 

sound using a 

loudspeaker.  

A radio wave creates a 

potential difference 

between the antenna 

and the ground due to 

which an alternating current tries to flow between the antenna and the ground. If the 

resonance frequency of the LC circuit is not the same as the incoming radio waves it 

allows the radio signal to go directly to the ground as its impedance is low to such 

frequencies. On the other hand if the resonance frequency of the LC circuit is exactly 

the same as the incoming radio signal then it blocks the signal from going directly to 

the ground because the LC circuit has almost infinite impedance at this frequency. 

Rather it diverts the radio signal through the parallel radio receiver circuit where the 

desired audio signal is extracted and we hear the audio signal. Here the radio receiver 

circuit offers lower impedance than the LC tuning circuit, and therefore, the radio 

signal goes from the antenna to the ground through the radio receiver circuit. 

At any time we have radio signals from many stations producing emf’s of different 

frequencies in the antenna-ground combination. To choose a particular radio station 

having a particular broadcasting frequency, the capacitor is adjusted so that the LC 

circuit resonates at the desired frequency. Signals of other frequencies from other radio 

stations are allowed to flow down to earth directly since the LC circuit offers negligible 

resistance to these signals. On the other hand the LC circuit because of its high 

impedance at the chosen frequency blocks this signal, and the signal is made to pass 

through the parallel radio receiver circuitry. In this way we isolate a single radio signal 

from many others. Just by changing the capacitance we can change the resonant 

frequency of the tuning circuit and choose another radio station. 

 

Fig.4-35: Use of a parallel LC circuit as a tuner in radio receivers 
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4.18 Transformer, transferring ac power 

The phenomenon of mutual inductance 

involving two coils discussed before is 

utilised in a popular device called a 

transformer whose symbol, together with 

a source of an alternating emf ep and a 

load ZL are shown in Fig.4-36. Here the 

two coils P and S are intimately linked 

through their magnetic flux. The ac 

source ep applies power to the P side, 

which is transferred to a load impedance 

ZL on the S side simply through the 

intermediary of the magnetic flux 

linkage between the coils. There is no direct electrical connection between the source 

of emf and the load. The coils may be magnetically coupled just by their physical 

proximity, and there may or may not be a core of magnetic material linking them. The 

symbol shown is for a transformer with a magnetic core, indicated by the two thick 

bars. An air core transformer, as shown in Fig.4.37 

has no bars in the symbol. 

Following Eq.3.12 in the previous chapter, the 

induced emf es in coil S would depend on the rate of 

change of current in coil P. Therefore, if an emf source 

with a varying voltage drives the coil P, an induced 

emf will be generated in coil S which can drive a 

current through a load ZL in turn. It is evident from the 

above discussion that unless the current through the 

coil P changes with time there cannot be any emf in 

the coil S. Therefore the driving voltage cannot be a 

smooth dc. It should be a varying dc, or ac.  

4.18.1 Primary and secondary coils 

Though the two transformer coils can easily be reversed in function, it is usual to drive 

a specified coil from a source, and to drive the load using the other coil. This has given 

rise to the names, Primary and Secondary coils, primary being the one driven by the 

source, while the one driving the load is the secondary. According to this scheme, the 

P and S coils in Figs.4-36 and 4-37 stand for the Primary and the Secondary coils 

respectively.  

4.18.2 Analysis, ideal transformer 

Here we analyse an ideal transformer. This assumes that the coils have no resistance, 

self inductance or capacitance; they only have mutual inductance, and the primary coil 

can take in any amount of current as demanded by a combination of source emf, the 

transformer and the load. That is, the transformer can supply any amount of power to 

Fig.4-37: Symbol of an 

air-core  transformer  

P S 

Fig.4-36: A transformer connected 

to a source and a load 

Load Source Transformer 

P S 

Z L 

ep 
es 

ip is 
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the load as demanded. All the magnetic flux produced by the primary are linked to the 

secondary, meaning that there is no leakage flux from the primary that does not link 

the secondary coil. The core material, if any, also does not consume any power and is 

never saturated. The driving emf is an ac signal. 

For analysis let us choose the following symbols where the subscripts p and s 

correspond to the respective sides: 

Np, Ns : number of turns in respective coil  

ep , es  : emf, driven or induced 

p,  s : magnetic flux in the two coils, should be equal for a transformer 

ip, is : current in the respective circuits 

Pp, Ps : power in the respective circuits 

Now, from Faraday’s laws of electromagnetism, 

p

ppp

pp
N

e

dt

d
or

dt

d
Ne 


,,   

and 

s

sss

ss
N

e
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d
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Ne 


,,  

Since the two coils are intimately connected through their magnetic flux (assuming no 

outside leakage), therefore, 

dt

d
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d
sp 

 ,  wherefrom,   
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e

N

e
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This gives us the famous relationship between the voltages and the number of turns, 

s

p

s

p

N

N

e

e
   ... 4.90 

Again, an ideal transformer does not consume any power, nor it provides any extra 

power. Therefore power delivered to the primary coil is equal to the power in the 

secondary circuit (power conservation law). This gives,  

epip = esis   ... 4.91 

from which we get, 

p

s

s

p

i

i

e

e
    ... 4.92 

Again by combining the above two equations, we get, 
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p

s

s

p

i

i

N

N
   ... 4.93 

The above equations (Eqs.4.90 to 4.93) describe an ideal transformer function 

adequately. From Eq.4.90 we can see that the voltages at the two sides depend on their 

number of turns. By making Ns greater or less than Np we can respectively increase or 

decrease an ac voltage. If Ns > Np we call it a step-up transformer as the voltage is 

increased in the secondary. Similarly if Ns < Np we call it a step-down transformer. 

Again, Eqs.4.91 and 4.92 indicate that for a fixed input power, if the voltage at the 

secondary is increased, the secondary current will decrease in the same proportion. The 

reverse is also true, i.e., a higher current in secondary is possible by decreasing the 

voltage.  

4.18.3 Who determines the current? 

From the above discussions there is a tendency to think that whatever ip is applied is 

transformed according to Eq.4.92 to the secondary for a given transformer. However, 

this is not the right approach to think. For a given transformer and a given ep we cannot 

control the current from the primary side. It is es and ZL which determine is (= es /ZL) 

first. Then ip is determined using Eq.4.92. Therefore, for a given ep, ip depends on is, 

not the reverse. On the other hand, for a given transformer if we have a freedom to 

choose ep, then we can increase or decrease is for a given ZL, subject to the maximum 

power that the transformer can handle (a practical transformer has such a power 

limitation, which is not there in the ideal case)  

4.18.4 Reflected impedance 

From the induced emf es in the secondary, the load impedance ZL takes a current is such 

that,  

is = es /ZL,  or,  ZL = es /is  ... 4.94 

Looking from the point of view of the applied emf ep at the primary in Fig.4-36, the 

combination of the transformer and the load impedance ZL at the secondary produce an 

effective impedance Zp, which we call the reflected impedance of ZL to the primary 

side. This is determined by the current ip that is demanded from ep. Thus Zp, seen by 

the source ep is given by, using Eqs.4.90 and 4.93, 
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which can also be expressed as,   L
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The above equations show that the load impedance at the secondary is multiplied by 

the square of the ratio of the number of turns in the coils, or of the voltages, as shown 

to become the reflected impedance at the primary side. This reflected impedance can 

be used to determine the current in t he primary due to a given source emf.  

Viewed from the secondary side, impedances in the primary side will also be reflected 

in a similar way. 

4.18.5 Practical transformers 

An ideal transformer does not consume any power itself; it just conveys the input 

power to the load. That means it has a 100% efficiency and can handle any amount of 

current and power. In practice, it is not so because of a host of reasons and some of the 

important ones are described below. The power consumed by the transformer itself 

heats it up and this limits the power that it can practically handle.  This maximum 

depends on the materials and sizes of the magnetic core, materials and sizes of the wire 

making the coils, and the frequency of the ac being transferred. The maximum current 

that any side can handle also depends on the area of cross section of the wires making 

the respective coils.  

The resistance of each of the coils will cause some voltage drop across it when a 

current flows, and the product of this voltage and current will heat the coil up.  

The core material is usually made up of iron which is an electrical conductor. 

Therefore it can also act as a secondary coil of the transformer which form closed 

current loops within the core itself, called eddy currents. These also consume power 

and heat up the core. To reduce such eddy currents transformers never use solid blocks 

of iron, rather they use thin sheets of iron each insulated from the next using thin 

insulating varnish coatings, and arranged suitably with respect to the magnetic flux 

directions. Such arrangement improves the transformer performance significantly. The 

iron core has another magnetic property called hysteresis which results in consuming 

some power while the direction of the current is alternating. To reduce such hysteresis 

loss, special magnetic materials are used for the cores in transformers. Silicon steel is 

such a magnetic material which is used extensively in power line transformers. 

There will be some leakage flux from the primary which complete their loops outside 

the magnetic core and do not link the secondary coil. There will be similar leakage 

fluxes in the secondary too. These will be of no use in the power transfer. 

Therefore the output power is expected to be a little less than the input power. In terms 

of efficiency (output power/input power, described in percentage), an ideal transformer will 

have an efficiency of 100% while a practical one will have an efficiency less than that. 

Typical values are around 90%.  

Again the transformer core can have various designs. Two popular ones are shown in 

Fig.4-38. In the top design, the two coils are wound on opposite arms of a rectangular 

shaped core. Such cores are used in isolating transformers where we want to reduce 

electrical shock hazards to a minimum. This is achieved because of the physical 
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separation between the two coils; chances of one coil 

touching the other, even if there is a leak in the 

insulation, are minimum. 

On the other hand this transformer is not very 

efficient. This is because some magnetic fluxes of the 

primary form closed loops outside the magnetic core 

and these do not link the secondary. Therefore there is 

efficiency loss due to leakage flux. 

Leakage flux is minimised in the second design. Here 

the core has three arms as shown and both the coils 

are wound on the central arm, with the secondary over 

the primary. The secondary coil links to most of the 

magnetic fluxes created by the primary in this design 

and so it has greater efficiency. 

4.18.6 Advantages in power distribution 

Transformers are extensively used with the ac main 

line systems to increase or decrease the voltage at will, 

which has many advantages. One of the main advantages is that the power can be 

transmitted and distributed over long distances with little energy loss if the voltage is 

kept high. This is because for the same power, current is low, therefore i
2
R loss in wire 

is low. Typical RMS voltage standards for transmission over long distances are: 

230,000V and 132,000V, and for distribution over shorter distances within cities and 

towns are: 33,000V and 11,000V. At the terminal user point, typically 220V RMS for 

single phase connection is derived from 380V phase to phase voltage in a 3-phase 

system (see any book on electrical engineering for details of a 3-phase power distribution 

system). Some countries choose 110V RMS instead of 220V at the user end. The choice 

is based on a compromise between current carrying capacity of wires of practicable 

dimensions and human safety considerations (higher the voltage, thinner the wire, and 

higher the hazard). The frequency chosen is 50Hz in some countries while it is 60Hz in 

some others. If the frequency were higher, losses due to inter-wire capacitance and 

electromagnetic radiation would increase. On the other hand at lower frequencies, the 

size of transformers would increase. However, the small difference between 50Hz and 

60 Hz is purely historical; human ego and political differences between different 

countries developing new technologies often result in such variations in standards.  

That an ac allows voltage levels to be changed easily using transformers which makes 

longer transmission distances possible with little heating losses in wires is the primary 

reason that dc main line systems became outdated long time back. 

4.18.7 Transformer cores at different frequencies 

At low frequencies a ferromagnetic core (e.g., Silicon steel, in the form of sheets) is used 

universally to increase the mutual inductance of a transformer. At high frequencies (> 

few tens of kHz) the magnetic domains of iron cannot rotate so fast, therefore, special 

Fig.4-38: Practical 

transformer designs 
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composite ferrite materials are used. At still higher frequencies(> few MHz) ferrites also 

cannot follow the changes so no extra core material is used, and these are called air-

core transformers. You will see that a Medium wave radio having a frequency range of 

around 1MHz uses a ferrite rod within its coils (which is essentially a transformer 

converting the voltage generated by an antenna) while in a Short wave radio, nothing is 

there within the coils meaning that it is an air-core transformer.  

4.18.8 Stray capacitances and inductances 

Any two conductors placed close together will have a capacitance, providing a path for 

ac.  The windings of a coil will have interwinding capacitance between each pair of its 

turns, and such capacitance is present in both the primary and the secondary. Since 

these appear in parallel to the emf sources, some current will be lost through these 

capacitances. There will also be some current directly linking the primary and 

secondary through the inter-coil capacitance (between the two coils). The leakage flux of 

the two coils that do not link the other contribute to self inductances of both the coils 

which will also offer resistance to current (expressed in terms of their reactance) and the 

combination of L and C may give rise to oscillations if the right conditions exist. The 

resistance of the material of the wire used to make the coils also provides an opposition 

to current as mentioned before. 

4.18.9 Transformer Equivalent circuit 

An equivalent model of a practical transformer is necessary to include the effects 

discussed above which will help in analysing circuits involving transformers. This is 

important particularly at high frequencies when stray capacitances and inductances 

become important. Such an equivalent circuit is shown in Fig.4-39 where the 

transformer symbol shown at the middle represents an ideal transformer. All the non-

ideal elements have been represented by their effective equivalents outside the 

transformer so that these can be considered easily in an analysis. Here Rp and Rs in 

series to the respective coils represent the dc resistances of the windings. Lp and Ls 

represent the respective lumped (taken together) inductances because of leakage fluxes. 

Fig.4-39: Equivalent circuit (model) of a practical transformer  
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Cp and Cs represent the respective lumped parallel interwinding capacitances while Cc 

represent the stray coupling capacitance between the two coils. Rc represents the core 

losses (due to hysteresis and eddy currents) which has been shown as providing an 

alternative path to input current. There may be some more elements contributing to 

non-ideal behaviour, however, the above is enough for the scope of this book. 

To analyse currents on any side of the transformer, the elements on the other side can 

be brought up through reflection as suggested in Eqs.4.95 and 4.96. For simplicity let 

us assume CP, CS and CC to be very low (which is reasonable at low frequencies), and RCP 

and RCS to be very high (for a good core material this is also reasonable) so that they may 

be ignored (assumed open circuit). Then we are 

left with only the equivalent circuit shown in 

Fig.4-40, where we have added a source of emf 

at the primary and a load RL at the secondary. If 

we replace the ratio NP /Ns by a:1, then the 

equivalent circuit may be represented as in 

Fig.4-41 by reflecting LS and RS to the primary 

side following Eqs.4.95 and 4.96. Here the 

reflected values are a
2
RS, a

2
LS and a

2
RL 

respectively. We can now combine the two 

resistances RP and a
2
RS as RT, and the two 

inductances LP and a
2
LS as LT to get the final form as shown in Fig.4-42. This circuit 

can be used to calculate the current through the load for a given source potential, and to 

calculate the voltage dropped across RL following techniques developed for an LR 

circuit earlier. 

 

4.18.10 Other applications 

Impedance matching and Electrical isolation  

Transferring ac power at a different voltage is the most extensive use of a transformer 

which is also used extensively in providing low voltage dc in electronic circuits from 

the ac power mains. However, a transformer also provides electrical isolation between 

Fig.4-42: Final equivalent circuit 
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two or more circuits, which may be of the major interest in certain applications. 

Besides impedance-matching of two electronic circuits is also an important application 

of transformers in electronics which is described first below. 

Impedance matching of two circuits. 

In the previous chapter (section 2.17) we have seen that when two devices are 

connected together, a maximum power transfer occurs if the output impedance of the 

source equals the load impedance. If this condition is not met in a system, we can 

interpose an appropriately designed transformer to bring about the desired situation, 

and this procedure is called impedance matching. To see how it works, let us consider 

Eq.4.96 above which show how the load impedance is reflected to the primary side. 

This means that for a step down transformer the reflected load impedance at the 

primary is many times higher, and for a step-up transformer, it is many times lower. 

This property may be used through suitable design of the transformer. This is further 

illustrated in the example below. 

Example 4.1: Suppose we have a source having a high output impedance (Fig.4-43b) 

RS = 10,000, which has to transfer power to a load with a much smaller impedance, 

RL = 100. We know from section 2.17 that this will not provide a good power 

transfer. To achieve a good power transfer we have to match the impedances by 

interposing a suitably designed transformer as shown in Fig.4-43b. This will give rise 

to the equivalent circuit in Fig.4-43c from which we can see that for maximum power 

transfer from the source to the load, the reflected load impedance at the primary, a
2
RL 

needs to be equal to RS (=10,000). This requires the turn ratio to be 

100

000,10
a  =10 

which represents a step down transformer with a turn ratio of 10:1. Thus with the 

transformer, the effective load resistance is equal to the source resistance and we have 

maximum power transfer. 

Fig.4-43: a) mismatched source and load impedance, b) Impedance matching using a 

transformer, and c) equivalent circuit at primary side showing impedance matching 
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We can see the whole thing from a slightly different viewpoint. Considering the 

transformer itself as a two-port network, its input impedance (primary side) is high 

while the output impedance is low since it is a step-down transformer. So there is a 

good power transfer from the source to the transformer. Again at the output there is 

good power transfer from the low impedance of the transformer to the low load 

resistance. 

 

4.18.11 Electrical isolation between two or more circuits 

In a transformer electrical power is transferred through the intermediary of magnetic 

flux.  There is no direct electrical contact between the primary and the secondary coils 

of a transformer. Therefore it provides an electrical isolation between the two circuits 

which is necessary in many situations.  

In some electronic circuits we may have two or more separate parts which should not 

have any common electrical connections for various reasons. A transformer may 

provide the necessary electrical isolation. 

We can obtain a low voltage dc from 220V ac without using a transformer, but that 

will expose us to life threatening hazards. One of the main uses of a transformer is in 

saving us from the hazards of getting an electrical shock from the mains 220V line 

when we touch the low voltage sides of an electronic appliance by isolating the 

exposed side electrically from the high voltage side. Therefore transformer coils should 

be adequately insulated from the core and from each other. In normal transformers this 

is achieved firstly through the use of a chemically insulated wire (called enamelled wire) 

for the coils, by winding the coil on a plastic bobbin which isolates the coil from the 

core, and through the use of varnished paper or plastic sheets between the primary and 

the secondary coils if they are wound one above the other. Finally, the whole assembly 

is dipped in liquid varnish and dried to produce a safe transformer. Normal plastic 

covered wires are not used in transformers as the insulations are thick and will allow 

only a few turns to be made in a particular volume. Instead enamelled copper wire is 

used to wind the coils in a transformer. Enamel is a very thin insulating coating applied 

on the wire chemically. This allows more turns to be wound. However, one has to be 

careful while winding the coils since any sharp bends in the wire will tend to break the 

insulation.  

Even with all the precautions, there will be a capacitance between the primary and the 

secondary coils, and between the coils and the core. Since a capacitor allows ac to pass 

there will be some ac passing directly from the primary to the core. Since the core is 

usually in contact with the metallic cabinet of an appliance, one might feel a slight 

electric shock when touching exposed metallic parts of the equipment with a bare hand 

if the metallic body of an appliance is not connected to the Earth terminal of our 

household electrical outlets. (see any engineering book for a description of the mains power 

line arrangements and the necessity of the Earth line in providing safety)  



AC Circuits Chapter 4 

 126 

In medical equipment, particularly the ones used in Cardiac (related to heart) clinics and 

hospitals, even the isolation provided by the normal transformers described above is 

not adequate. Therefore equipment built with ordinary transformers are not allowed in 

hospital equipment. For such equipment the transformers are specially designed to 

reduce the resistive and capacitive leakage current between the primary and the 

secondary so that no more than 10A at the line frequency (50 or 60Hz) can pass 

through the body of the patient in the worst case of the primary touching the mains live 

wire by accident. This arose from the requirement that in such clinics, a direct 

electrical connection to the heart muscles may be brought out in some patients, and 

only 50A through these links direct to the heart may kill a patient. In normal domestic 

appliances a higher leakage current (~100A, as provided by normal transformers) may be 

allowed since current entering through a limb gets dispersed throughout the body so 

that very little of it actually passes through the heart.  

4.18.12 Transformers in Switch Mode Power Supply 

In electronic appliances, dc power is needed to drive the electronic devices, and that 

mostly at low voltages below 30V. Transformers are extensively used within each 

appliance to decrease the ac voltage first, and then to convert it to smooth dc 

electronically. To cater for ups and downs in line voltages, such power supplies are 

designed with larger voltages than needed and then the additional voltage dropped 

using series pass elements (usually transistors). This gives rise to lots of wasted power 

and low efficiency contributing to heating up of the appliances. Besides, at 50 or 60Hz 

the size of the transformer is large and heavy. Nowadays these are being replaced by 

much more efficient devices called switch mode power supplies that have high 

efficiencies (more than 90%), and the sizes of transformers are also considerably 

reduced. Such power supplies convert the mains line ac directly to high voltage dc 

first. This dc is then used to generate a high frequency (>100KHz) square waves which 

are then converted to low voltage using transformers. Regulation to cater for ups and 

downs in line voltages is carried out by modulating the width of the square wave 

pulses and this results in very high efficiencies. Again transformers at such frequencies 

can have very reduced sizes for the same power delivery. This we can guess from the 

reactance L of an inductor. Because of large , a very small inductor will have a high 

reactance and a small number of turns are required to make a transformer. The core 

size is also low at such frequencies. 

 

Such novel techniques and many others depend on the wonders of electronic devices 

like diodes, transistors, Integrated Circuits, etc., and all these will be our subject of 

study in the next volumes.  
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APPENDICES 

Appendix-1 

Effective and RMS value of an ac, Power Factor 

We can easily describe the magnitude of a smooth 

dc potential by its voltage directly. On the other 

hand an ac potential is continuously changing in 

magnitude and in direction. How do we describe 

such a changing potential? This is done using an 

effective equivalent dc value that produces the 

same amount of average power as the ac in a 

resistance, as explained below. Fig.A1-1a shows an 

ac source with potential e driving a certain average 

power PAC into a resistor R. Now we replace the ac 

source by a variable smooth dc source which is 

allowed to drive power into the same resistor R. 

We vary the dc voltage till the power PDC 

dissipated by the resistor equals the average power 

PAC dissipated when the ac source was there. The 

dc voltage that produced this power has the same 

power producing effect as the ac voltage source. 

Therefore we term this dc voltage value as the effective voltage value VEFF of the ac. 

Then VEFF can be used to describe the corresponding ac potential e.  

Now let us derive a value for VEFF analytically for a sinusoidal ac.  

Let the ac potential be given by, 

e = Vo Sin  t  ... A1.1 

where Vo is the amplitude or the peak voltage and  is the angular frequency. Then the 

instantaneous power pac delivered into the resistor R is, 

R

tSinV

R

e
p

22
o

2

ac


   ... A1.2 

The average power PAC  can be obtained by integrating pac over a full cycle and dividing 

by the period T as follows.  


T

o

o
AC dt

R

tSinV

T
P

221
  ... A1.3 

Evaluating the above we get, 
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Fig.A1-1: Basis for calculation of 
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i.e.,   
R

2
V

P

2
o

AC      ... A1.4 

which is the average power of the ac potential driving the resistor R. Note, in the above 

integration, the integral of the Cosine term is zero. 

Now the power PDC  delivered to the resistor R by the dc voltage VEFF  is given by, 

R

V
P

2
EFF

DC       ... A1.5 

which should equal the average ac power given by Eq.A1.4. Doing this we get, 

2

V
V

2
o2

EFF  ,  or,  
2

V
V o

EFF    ... A1.6 

which gives the value of the effective dc voltage in terms of the peak ac voltage Vo. 

Evaluating 2 we get,   VEFF = 0.707 Vo  ... A.1.6a  

Looking at Eq.A1.3 and Eq.A1.5 above we can say that  


T

o
oEFF dttSinV

T
V 221

 ... A1.7 

Now, how can we describe the term on the right hand side in Eq.A1.7? It is the square 

root of the average (or mean) of the square of the original ac voltage. Therefore we can 

call it the Root Mean Squared ac voltage which abbreviates to the well known term 

RMS. Therefore, RMS voltage of an ac is also its Effective Voltage, and the former 

name has become more popular than the latter. It would have been more meaningful if 

it were the other way round. 

We can also appreciate from the above that the RMS voltage is the effective voltage for 

any ac or any varying voltage. However, the value Vo /2 is only applicable to a 

sinusoidal ac. It would not hold for other waveforms. 

From the above we can also deduce that the effective value of an ac current would also 

be given by its RMS value. So we have, for a sinusoidal ac, 

2

I
I o

EFF    ... A1.8 

We again appreciate that Eq.A1.8 holds only for a sinusoidal ac. Evaluating2, we get, 

IEFF = 0.707 Vo   ... A.1.8a  
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In an ac circuit, the voltage and current may have a phase difference . Corresponding 

to the sinusoidal voltage of Eq.A1.1 if the current is given by, 

i = Io Sin ( t + )   ... A1.9 

then we can calculate the instantaneous power as, 

pac = e i =Vo Io (Sin  t) [Sin ( t + )]= Vo Io (Sin  t) (Sin  t Cos  + Cos  t Sin ) 

or,  pac  = Vo Io (Sin
2
  t Cos  + Sin  t Cos  t Sin ) 

  = Vo Io [(1 – Cos 2 t) Cos  + Sin 2 t Sin ] / 2 

  = Vo Io [Cos   – Cos 2 t Cos  + Sin 2 t Sin ] / 2 

If we calculate the average power by integrating the above equation over a complete 

period and then divide by T, the terms having Sin 2 t  and Cos 2 t will give zero 

values and we will be left with (do it yourself), 

 CosIVCos
2

I

2

V
Cos

2

IV
P EFFEFF

oooo
AC    ... A1.10 

This is a very important result which says that the average power is not simply the 

product of effective voltage and current, there is another factor Cos  which depends 

on the phase difference between the current and the voltage. The Cos  term is called 

the power factor. Understandably, its maximum value is unity when  = 0. This 

happens only when the load is fully resistive such as for a filament lamp or a heater. 

For any load which has a inductive or capacitive component, the power factor is less 

than unity. For loads like electric fan, refrigerator where a motor is the main load, it is 

a mixture of inductive and resistive load and the power factor may be of the order of 

0.6. What is the implication of such low values of power factor?  

Suppose for a motor operating on an RMS voltage of 220V the current is 5A. This 

gives a product of 1100 Volt-Amp (VA, note: we have not used Watt). If the power factor 

is 0.6 then the motor will consume a power of 1100x0.6 watts (W), or, 660W. You can 

possibly appreciate now why we did not use Watt before. Now a 660W heater with a 

power factor of unity will take only 3A (=660W/220V) while a motor with the same 

power consumption takes 5A, much more than that consumed by the heater. This puts 

a greater demand on the current produced by a generator. Therefore power generation 

authorities usually require that consumers use power factor correcting devices to 

increase the power factor to close to unity. Since most of typical loads are inductive, 

power factor improvement is usually done by adding capacitors in parallel, which 

basically helps in decreasing the phase difference between the voltage and current.  

Another point worth noting is that ac sources or generators are usually rated in VA, not 

in Watts as hinted above. This is because a generator has no way of knowing 

beforehand how much power a load will take as the power factor will vary from load to 
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load. So it can only say about the maximum current that it can deliver at the rated 

voltage. Since the voltage is fixed, the VA value rather than the current is quoted 

because that will be closer to load power in watts with which the users are more 

familiar. Of course, maximum current rating is also given typically. Therefore any 

source like Voltage Stabilisers, UPS, or transformers which delivers or transfers ac 

power are rated in VA value.  

On the other hand an ac load knows what should be its power factor. So loads are 

usually rated in watts; the power factor being quoted as well. 

 

Appendix-2 

Average ac voltage, Form Factor 

What is the average of a sinusoidal ac 

voltage? Looking at Fig.A2.1 we can see 

that this will very well depend on the time 

range that is considered for this average. 

The average will vary with time. If we 

take average over a full cycle, clearly it 

will be zero as the +ve half cycle will 

cancel the –ve half cycle. If we take the 

average over one of these half cycles 

(shown shaded) we will get a non-zero 

average value. This is usually the average 

value quoted for a sinusoidal ac voltage (which is not very useful for ac, but is useful for its 

rectified form; see next appendix). Let us deduce a value for this average. 

We have,   e = Vo Sin  t  ... A2.1 

Therefore average over the positive half wave is given by,  
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i.e.,  


o
AV

V2
V    ... A2.2 

Evaluating , we get   VAV = 0.637 Vo  ... A2.3 

which is the commonly accepted average of an ac sinusoidal voltage. 

The average current will be similarly described. 
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Fig.A2.1: Averaging over half a cycle 
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The effective or RMS voltage (given by Eq.A1.6a) and the Average voltage both are 

important parameters for an ac.  

The ratio of these two parameters is also an important parameter called the Form 

Factor. Therefore, we have,   

FORM FACTOR = VRMS /VAV  = 1.11 

The above result of 1.11 holds only for a sinusoidal waveform. For any other waveform 

the form factor will have a different value. 

 

Appendix-3 

AC volt meters – average and RMS measurement 

A galvanometer is basically a dc current measuring device. It has a certain internal 

resistance. Therefore at a certain applied voltage a specified current will pass through 

it. Therefore the galvanometer can also be calibrated in terms of a dc voltage. By 

adding a suitable resistance in series its dc voltage measuring capability can be 

increased while the ac current capability can be increased by connecting a low 

resistance in parallel (a shunt). Now, how to measure an ac voltage using this 

galvanometer which is always changing? Usually the ac voltage is firstly rectified 

using semiconductor diodes and the rectified dc voltage is applied to the galvanometer. 

The rectification can be half wave or full wave as shown in Fig. A3.1. These are 

varying voltage as well. So how would a 

galvanometer needle respond to such a 

changing voltage? 

Well, at very low frequency (say, 1Hz) the 

needle will follow the voltage change which 

is very slow. As one increases the 

frequency, the needle is pulled back before 

it can reach the peak deflection. It will still 

vary but will not be able to deflect to the 

peak amplitude. At the line frequency of 

50Hz, it is almost impossible for the needle 

to follow the changes, and it usually 

deflects to a fixed value. This fixed value is 

the average voltage of the rectified dc 

waveform. (You can appreciate that such a 

needle galvanometer will show zero if a 50 Hz 

ac is applied to it directly, since the average of 

the ac over a complete cycle is zero. Taking the 

average over a long period of time will also be 

almost zero)  

Fig.A3.1: Voltage waveforms:  

a) sinusoidal ac, b) full wave rectified  

and c) half wave rectified  

time-> 

time-> 

time-> 

c 

b 

a 
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The average value of a full wave rectified waveform as shown in Fig.A3.1b will be the 

same as calculated in Eq.A2.2 for an ac since the full wave rectified waveform is just 

the repetition of a half wave (Fig.A2.1) which was considered for calculating the 

average. Therefore if the ac voltmeter uses full wave rectification, it will deflect to 

show the average value which is 0.637Vo. Now the thing is, we usually like to describe 

an ac voltage in terms of its RMS value, not its average. Therefore the marking on the 

galvanometer dial is made to indicate the corresponding RMS voltage. For example, if 

the peak amplitude Vo is 10V, average of the full wave rectified voltage would be 

6.37V. If we rectify this ac ourselves and feed the output to a dc voltmeter, we would 

get this reading. However, to read the ac directly off the meter we calibrate the dial 

such that at this position the needle would show 7.07V, 1.11 times the actual dc 

voltage reading. In this way we can read the RMS value of a sinusoidal ac voltage 

directly from such a meter. Even most hand held digital multimeters are also of the 

average reading type internally, but in the display they show the corresponding RMS 

value.  

Semiconductor devices used to rectify an ac waveform usually drop some voltage 

themselves, of the order of a fraction of a volt, therefore, voltage readings will have some 

errors due to this, which will be more significant at low voltages. Therefore you will see 

that the actual voltage markings in a needle type ac voltmeter are non linear, particularly at 

low voltages. However, in digital voltmeters, these errors are eliminated through the use of 

clever electronic circuit design. 

What happens if the ac waveform is not sinusoidal? The needle would still point to the 

average of the full wave rectified value, but since the form factor is no more 1.11, the 

RMS value indicated by the dial will no longer be valid. Remember this fact while 

measuring a non-sinusoidal waveform using an ordinary digital meter too. 

Nowadays many ac power circuits are controlled by a semiconductor device called 

TRIAC which control the output power by cutting off part of the sinusoidal ac. The 

resulting waveform is no longer a sinusoidal one and therefore any ac meter employing 

an average reading galvanometer would give a wrong indication for RMS value. Again 

at different setting for power, the waveform will be different, so the meter calibration 

would change too. Therefore if you use such meters, take note of the waveform. Of 

course there are special meters which use sophisticated techniques to obtain the RMS 

value, both in needle galvanometer type and in digital type. These are called RMS 

measuring ac meters. One would be better off using one of these meters, but as can be 

expected, these are a bit expensive and are not available in ordinary shops.  

Some meters may use a half wave rectifier, the waveform is shown in Fig.A3.1c. 

During the negative half cycle, the output voltage is zero, the negative half is not 

passed at all. Here the average voltage will clearly be half of the value given by 

Eq.A2.3 for a full wave rectified waveform. Therefore the average voltage of a half 

wave rectified sinusoidal ac would be 0.318Vo (= 0.637Vo /2) and the dial calibration 

will be made accordingly. 

The above considerations would also apply to AC current meters. 
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